×

Dynamical behaviors of the tumor-immune system in a stochastic environment. (English) Zbl 1439.92065

Summary: This paper investigates dynamical behaviors of the tumor-immune system perturbed by environmental noise. The model describes the response of the cytotoxic T lymphocyte to the growth of an immunogenic tumor. The main methods are stochastic Lyapunov analysis, comparison theorem for stochastic differential equations (SDEs), and strong ergodicity theorem. Firstly, we prove the existence and uniqueness of the global positive solution for the tumor-immune system. Then we go a further step to study the boundaries of moments for tumor cells and effector cells and the asymptotic behavior in the boundary equilibrium points. Furthermore, we discuss the existence and uniqueness of stationary distribution and stochastic permanence of the tumor-immune system. Finally, we give several examples and numerical simulations to verify our results.

MSC:

92C32 Pathology, pathophysiology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems

References:

[1] J. A. Adam and N. Bellomo, A Survey of Models for Tumor-Immune System Dynamics, Birkhäuser, Boston, 1997. · Zbl 0874.92020
[2] G. Albano and V. Giorno, A stochastic model in tumor growth, J. Theoret. Biology, 242 (2006), pp. 329-366. · Zbl 1447.92081
[3] R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), pp. 1039-1091. · Zbl 1334.92187
[4] V. I. Bogachev, N. V. Krylov, and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions, Comm. Partial Differential Equations, 26 (2001), pp. 2037-2080. · Zbl 0997.35012
[5] J. Bao and J. Shao, Permanence and extinction of regime-switching predator-prey models, SIAM J. Math. Appl., 48 (2016), pp. 725-739. · Zbl 1337.60147
[6] N. Bellomo, Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach, Birkhäuser, Berlin, 2007. · Zbl 1140.91007
[7] R. Bürger, The Mathematical Theory of Selection, Recombination, and Mutation, John Wiley \(\&\) Sons, Chichester, 2000. · Zbl 0959.92018
[8] L. G. de Pillis, A. E. Radunskaya, and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), pp. 7950-7958.
[9] N. T. Dieu, D. H. Nguyen, N. H. Du, and G. Yin, Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dynam. Systems, 15 (2016), pp. 1062-1084. · Zbl 1343.34109
[10] A. d’Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences, Phys. D. Nonlinear Phenomena, 208 (2005), pp. 220-235. · Zbl 1087.34028
[11] N. H. Du, D. H. Nguyen, and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 53 (2016), pp. 187-202. · Zbl 1338.34091
[12] R. L. Elliott and G. C. Blobe, Role of transforming growth factor Beta in human cancer, J. Clinical Oncology, 23 (2005), pp. 2078-2093.
[13] L. Ferrante, S. Bompadre, L. Possati, and L. Leone, Parameter estimation in a Gompertzian stochastic model for tumor growth, Biometrics, 56 (2000), pp. 1076-1081. · Zbl 1060.62605
[14] R. P. Garay and R. Lefever, A kinetic approach to the immunology of cancer: Stationary states properties of effector-target cell reactions, J. Theoret. Biology, 73 (1978), pp. 417-438.
[15] N. S. Goel and N. Richter-Dyn, Stochastic Models in Biology, Academic Press, New York, 1975.
[16] A. Hening and D. H. Nguyen, Coexistence and extinction for stochastic Kolmogorov systems, Ann. Appl. Probab., 28 (2018), pp. 1893-1942. · Zbl 1410.60094
[17] A. Hening, D. H. Nguyen, and G. Yin, Stochastic population growth in spatially heterogeneous environments: The density-dependent case, J. Math. Biol., 76 (2018), pp. 697-754. · Zbl 1392.92076
[18] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), pp. 525-546. · Zbl 0979.65007
[19] K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characterization, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 30 (1974), pp. 235-254. · Zbl 0326.60097
[20] R. Khasminskii, Stochastic Stability of Differential Equations, 2nd ed., Springer, Heidelberg, 2012. · Zbl 1241.60002
[21] N. L. Komarova, D. Wodarz, E. Angelis, M. A. J. Chaplain, and N. Bellomo, Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy, Birkhäuser, Berlin, 2008. · Zbl 1149.92015
[22] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), pp. 295-321. · Zbl 0789.92019
[23] D. Li and F. Cheng, Threshold for extinction and survival in stochastic tumor immune system, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), pp. 1-12. · Zbl 1470.92078
[24] K. J. Mahasa, R. Ouifki, A. Eladdadi, and L. G. de Pillis, Mathematical model of tumor-immune surveillance, J. Theoret. Biol., 404 (2016), pp. 312-330. · Zbl 1343.92281
[25] A. Mantovani, P. Allavena, and A. Sica, Tumor-associated macrophages as a prototypic type II polarised phagocyte population: Role in tumor progression, Eur. J. Cancer, 40 (2004), pp. 1660-1667.
[26] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006. · Zbl 1126.60002
[27] B. Mukhopadhyay and R. Bhattacharyya, A nonlinear mathematical model of virus-tumor-immune system interaction: Deterministic and stochastic analysis, Stoch. Anal. Appl., 27 (2009), pp. 409-429. · Zbl 1173.34032
[28] M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology, Oxford University Press, Oxford, 2000. · Zbl 1101.92028
[29] C. Oana, O. Dumitru, and C. Riccardo, Review of stochastic stability and analysis tumor-immune systems, Current Bioinformatics, 8 (2013), pp. 390-440.
[30] M. Owen and J. Sherratt, Modelling the macrophage invasion of tumors: Effects on growth and composition, IMA J. Math. Appl. Med. Biol., 15 (1998), pp. 165-185. · Zbl 0909.92022
[31] A. S. Perelson and G. Weisbuch, Immunology for physicists, Rev. Modern Phys., 69 (1997), pp. 1219-1267.
[32] H. Siu, E. S. Vitetta, R. D. May, and J. W. Uhr, Tumor dormancy. I. Regression of BCL1 tumor and induction of a dormant tumor state in mice chimeric at the major histocompatibility complex, J. Immunology, 137 (1986), pp. 1376-1382.
[33] W. Y. Tan and C. W. Chen, Cancer stochastic models, in Encyclopedia of Statistical Sciences, John Wiley & Sons, New York, 2006.
[34] M. Villasana and A. Radunskaya, A delay differential equation model for tumor growth, J. Math. Biology, 47 (2003), pp. 270-294. · Zbl 1023.92014
[35] J. T. Wu, D. H. Kirn, and L. M. Wein, Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response, Bull. Math. Biol., 66 (2004), pp. 605-625. · Zbl 1334.92243
[36] R. Yafia, Hopf bifurcation in differential equations with delay for tumor-immune system competition model, SIAM J. Appl. Math., 67 (2007), pp. 1693-1703. · Zbl 1156.34066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.