×

Stochastic Lotka-Volterra food chains. (English) Zbl 1392.92075

Summary: We study the persistence and extinction of species in a simple food chain that is modelled by a Lotka-Volterra system with environmental stochasticity. There exist sharp results for deterministic Lotka-Volterra systems in the literature but few for their stochastic counterparts. The food chain we analyze consists of one prey and \(n-1\) predators. The \(j\)th predator eats the \(j-1\)th species and is eaten by the \(j+1\)th predator; this way each species only interacts with at most two other species–the ones that are immediately above or below it in the trophic chain. We show that one can classify, based on an explicit quantity depending on the interaction coefficients of the system, which species go extinct and which converge to their unique invariant probability measure. Our work can be seen as a natural extension of the deterministic results of Gard and Hallam ’79 to a stochastic setting. As one consequence we show that environmental stochasticity makes species more likely to go extinct. However, if the environmental fluctuations are small, persistence in the deterministic setting is preserved in the stochastic system. Our analysis also shows that the addition of a new apex predator makes, as expected, the different species more prone to extinction. Another novelty of our analysis is the fact that we can describe the behavior of the system when the noise is degenerate. This is relevant because of the possibility of strong correlations between the effects of the environment on the different species.

MSC:

92D25 Population dynamics (general)
37H15 Random dynamical systems aspects of multiplicative ergodic theory, Lyapunov exponents
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J60 Diffusion processes

References:

[1] Blath, J; Etheridge, A; Meredith, M, Coexistence in locally regulated competing populations and survival of branching annihilating random walk, Ann Appl Probab, 17, 1474-1507, (2007) · Zbl 1145.92032 · doi:10.1214/105051607000000267
[2] Benaïm M (2014) Stochastic persistence, preprint · Zbl 1176.92041
[3] Benaïm, M; Hofbauer, J; Sandholm, WH, Robust permanence and impermanence for stochastic replicator dynamics, J Biol Dyn, 2, 180-195, (2008) · Zbl 1140.92025 · doi:10.1080/17513750801915269
[4] Benaïm, M; Lobry, C, Lotka Volterra in fluctuating environment or how switching between beneficial environments can make survival Harder, Ann Appl Probab, 26, 3754-3785, (2016) · Zbl 1358.92075 · doi:10.1214/16-AAP1192
[5] Braumann CA (2002) Variable effort harvesting models in random environments: generalization to density-dependent noise intensities. Math Biosci 177/178:229-245, Deterministic and stochastic modeling of biointeraction (West Lafayette, IN, 2000) · Zbl 1402.92341
[6] Benaïm, M; Schreiber, SJ, Persistence of structured populations in random environments, Theor Popul Biol, 76, 19-34, (2009) · Zbl 1213.92057 · doi:10.1016/j.tpb.2009.03.007
[7] Benaïm M, Strickler E (2017) Random switching between vector fields having a common zero, arXiv:1702.03089 · Zbl 0444.92013
[8] Cattiaux, P; Collet, P; Lambert, A; Martínez, S; Méléard, S; Martín, J San, Quasi-stationary distributions and diffusion models in population dynamics, Ann Probab, 37, 1926-1969, (2009) · Zbl 1176.92041 · doi:10.1214/09-AOP451
[9] Chesson, P, General theory of competitive coexistence in spatially-varying environments, Theor Popul Biol, 58, 211-237, (2000) · Zbl 1035.92042 · doi:10.1006/tpbi.2000.1486
[10] Cattiaux, P; Méléard, S, Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction, J Math Biol, 60, 797-829, (2010) · Zbl 1202.92082 · doi:10.1007/s00285-009-0285-4
[11] Costa, M, A piecewise deterministic model for a prey-predator community, Ann Appl Probab, 26, 3491-3530, (2016) · Zbl 1358.92077 · doi:10.1214/16-AAP1182
[12] Dieu, NT; Du, NH; Nguyen, DH; Yin, G, Protection zones for survival of species in random environment, SIAM J Appl Math, 76, 1382-1402, (2016) · Zbl 1352.34069 · doi:10.1137/15M1032004
[13] Du, NH; Nguyen, DH, Dynamics of Kolmogorov systems of competitive type under the telegraph noise, J Differ Equ, 250, 386-409, (2011) · Zbl 1215.34064 · doi:10.1016/j.jde.2010.08.023
[14] Dieu, NT; Nguyen, DH; Du, NH; Yin, G, Classification of asymptotic behavior in a stochastic SIR model, SIAM J Appl Dyn Syst, 15, 1062-1084, (2016) · Zbl 1343.34109 · doi:10.1137/15M1043315
[15] Du, NH; Nguyen, DH; Yin, G, Dynamics of a stochastic Lotka-Volterra model perturbed by white noise, J Appl Probab, 53, 187-202, (2016) · Zbl 1338.34091 · doi:10.1017/jpr.2015.18
[16] Evans, SN; Hening, A; Schreiber, SJ, Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments, J Math Biol, 71, 325-359, (2015) · Zbl 1322.92057 · doi:10.1007/s00285-014-0824-5
[17] Evans, SN; Ralph, PL; Schreiber, SJ; Sen, A, Stochastic population growth in spatially heterogeneous environments, J Math Biol, 66, 423-476, (2013) · Zbl 1402.92341 · doi:10.1007/s00285-012-0514-0
[18] Freedman, HI; So, JWH, Global stability and persistence of simple food chains, Math Biosci, 76, 69-86, (1985) · Zbl 0572.92025 · doi:10.1016/0025-5564(85)90047-1
[19] Gard, TC, Persistence in food chains with general interactions, Math Biosci, 51, 165-174, (1980) · Zbl 0453.92017 · doi:10.1016/0025-5564(80)90096-6
[20] Gard, TC, Persistence in stochastic food web models, Bull Math Biol, 46, 357-370, (1984) · Zbl 0533.92028 · doi:10.1007/BF02462011
[21] Gard TC (1988) Introduction to stochastic differential equations. Marcel Dekker Inc., New York-Basel, p 234 · Zbl 0628.60064
[22] Gard, TC; Hallam, TG, Persistence in food webs. I. Lotka-Volterra food chains, Bull Math Biol, 41, 877-891, (1979) · Zbl 0422.92017
[23] Geiß, C; Manthey, R, Comparison theorems for stochastic differential equations in finite and infinite dimensions, Stoch Process Appl, 53, 23-35, (1994) · Zbl 0809.60074 · doi:10.1016/0304-4149(94)90055-8
[24] Harrison, GW, Global stability of food chains, Am Nat, 114, 455-457, (1979) · doi:10.1086/283493
[25] Hastings, A, Global stability in Lotka-Volterra systems with diffusion, J Math Biol, 6, 163-168, (1978) · Zbl 0393.92013 · doi:10.1007/BF02450786
[26] Hening A, Nguyen DH (2017a) Coexistence and extinction for stochastic Kolmogorov systems. Ann Appl Probab (accepted) · Zbl 1410.60094
[27] Hening A, Nguyen DH (2017b) Persistence in stochastic Lotka-Volterra food chains with intraspecific competition, preprint (2017), arXiv:1704.07501 · Zbl 1400.92435
[28] Hening A, Nguyen DH, Yin G (2017) Stochastic population growth in spatially heterogeneous environments: the density-dependent case. J Math Biol. https://doi.org/10.1007/s00285-017-1153-2 · Zbl 1392.92076
[29] Hening A, Strickler E (2017) On a predator-prey system with random switching that never converges to its equilibrium, arXiv:1710.01220 · Zbl 1145.92032
[30] Kallenberg O (2002) Foundations of modern probability. Springer, New York · Zbl 0996.60001 · doi:10.1007/978-1-4757-4015-8
[31] Kendall, BE; Bjørnstad, ON; Bascompte, J; Keitt, TH; Fagan, WF, Dispersal, environmental correlation, and spatial synchrony in population dynamics, Am Nat, 155, 628-636, (2000) · doi:10.1086/303350
[32] Liu, M; Bai, C, Analysis of a stochastic tri-trophic food-chain model with harvesting, J Math Biol, 73, 597-625, (2016) · Zbl 1347.92067 · doi:10.1007/s00285-016-0970-z
[33] Lande R, Engen S, Saether B-E (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press on Demand, Oxford · Zbl 1087.92064 · doi:10.1093/acprof:oso/9780198525257.001.0001
[34] Liebhold, A; Koenig, WD; Bjørnstad, ON, Spatial synchrony in population dynamics, Annu Rev Ecol Evol Syst, 35, 467-490, (2004) · doi:10.1146/annurev.ecolsys.34.011802.132516
[35] Luo, Q; Mao, X, Stochastic population dynamics under regime switching. II, J Math Anal Appl, 355, 577-593, (2009) · Zbl 1162.92032 · doi:10.1016/j.jmaa.2009.02.010
[36] Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore · JFM 51.0416.06
[37] Mallik, RK, The inverse of a tridiagonal matrix, Linear Algebra Appl, 325, 1-3, (2001) · Zbl 0980.15004 · doi:10.1016/S0024-3795(00)00262-7
[38] Massarelli, N; Hoffman, K; Previte, JP, Effect of parity on productivity and sustainability of Lotka-Volterra food chains: bounded orbits in food chains, J Math Biol, 69, 1609-1626, (2014) · Zbl 1310.92047 · doi:10.1007/s00285-013-0746-7
[39] Nguyen, DH; Du, NH; Yin, G, Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise, J Differ Equ, 257, 2078-2101, (2014) · Zbl 1329.60176 · doi:10.1016/j.jde.2014.05.029
[40] Nguyen, DH; Yin, G; Zhu, C, Certain properties related to well posedness of switching diffusions, Stoch Process Appl, 127, 3135-3158, (2017) · Zbl 1372.60117 · doi:10.1016/j.spa.2017.02.004
[41] Pimm SL (1982) Food webs, food webs. Springer, New York, pp 1-11 · doi:10.1007/978-94-009-5925-5
[42] Polansky, P, Invariant distributions for multi-population models in random environments, Theor Popul Biol, 16, 25-34, (1979) · Zbl 0417.92019 · doi:10.1016/0040-5809(79)90004-2
[43] Rey-Bellet L (2006) Ergodic properties of Markov processes, Open quantum systems. II, Lecture Notes in Mathematics, vol 1881 Springer, Berlin, pp 1-39 · Zbl 1126.60057
[44] Rudnicki, R, Long-time behaviour of a stochastic prey-predator model, Stoch Process Appl, 108, 93-107, (2003) · Zbl 1075.60539 · doi:10.1016/S0304-4149(03)00090-5
[45] Schreiber, SJ; Benaïm, M; Atchadé, KAS, Persistence in fluctuating environments, J Math Biol, 62, 655-683, (2011) · Zbl 1232.92075 · doi:10.1007/s00285-010-0349-5
[46] Schreiber, SJ, Persistence for stochastic difference equations: a mini-review, J Differ Equ Appl, 18, 1381-1403, (2012) · Zbl 1258.39010 · doi:10.1080/10236198.2011.628662
[47] Schreiber, SJ; Lloyd-Smith, JO, Invasion dynamics in spatially heterogeneous environments, Am Nat, 174, 490-505, (2009) · doi:10.1086/605405
[48] So, JWH, A note on the global stability and bifurcation phenomenon of a Lotka-Volterra food chain, J Theor Biol, 80, 185-187, (1979) · doi:10.1016/0022-5193(79)90204-2
[49] Takeuchi, Y; Du, NH; Hieu, NT; Sato, K, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J Math Anal Appl, 323, 938-957, (2006) · Zbl 1113.34042 · doi:10.1016/j.jmaa.2005.11.009
[50] Tyson, R; Lutscher, F, Seasonally varying predation behavior and climate shifts are predicted to affect predator-prey cycles, Am Nat, 188, 539-553, (2016) · doi:10.1086/688665
[51] Turelli, M, Random environments and stochastic calculus, Theor Popul Biol, 12, 140-178, (1977) · Zbl 0444.92013 · doi:10.1016/0040-5809(77)90040-5
[52] Volterra, V, Variations and fluctuations of the number of individuals in animal species living together, J Cons Int Explor Mer, 3, 3-51, (1928) · doi:10.1093/icesjms/3.1.3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.