×

Observer-based adaptive neural networks control for Markovian jump nonlinear systems with partial mode information and input saturation. (English) Zbl 1527.93470

Summary: The observer-based adaptive neural networks control problem is studied in this article for nonlinear Markovian jump systems (MJSs) with partial mode information and input saturation. The existing adaptive control scheme for MJSs works only when the Markov mode of system is completely known. For this reason, the concept of partial mode information of Markov chain is embedded into the framework of adaptive backstepping method and then a mode detector is set to emit the mode. To achieve the control objective, only the emitted mode is used to design the state observer and adaptive control scheme. Besides, an auxiliary signal is introduced in MJSs to compensate the effect of input saturation and this signal appears in controller as the input of neural networks instead of a separate term, which makes the form of proposed controller simpler than that in the literature. Finally, a numerical example and a practical example are provided to demonstrate the feasibility of our control scheme.
{© 2021 John Wiley & Sons Ltd.}

MSC:

93E35 Stochastic learning and adaptive control
93B53 Observers
93E03 Stochastic systems in control theory (general)
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] ZongG, LiY, SunH. Composite anti‐disturbance resilient control for Markovian jump nonlinear systems with general uncertain transition rate. Sci China Inf Sci. 2019;62(2):22205. https://doi.org/10.1007/s11432‐017‐9448‐8 · doi:10.1007/s11432‐017‐9448‐8
[2] LiQ, LiangJ, GongW. Stability and synchronization for impulsive Markovian switching CVNNs: matrix measure approach. Commun Nonlinear Sci Numer Simul. 2019;77:126‐140. https://doi.org/10.1016/j.cnsns.2019.04.022 · Zbl 1511.34079 · doi:10.1016/j.cnsns.2019.04.022
[3] NieX, ZhengWX. Dynamical behaviors of multiple equilibria in competitive neural networks with discontinuous nonmonotonic piecewise linear activation functions. IEEE Trans Cybern. 2016;46(3):679‐693. https://doi.org/10.1109/tcyb.2015.2413212 · doi:10.1109/tcyb.2015.2413212
[4] ZongG, QiW, KarimiHR. L_1 control of positive semi‐Markov jump systems with state delay. IEEE Trans Syst Man Cybern Syst. 2020. https://doi.org/10.1109/tsmc.2020.2980034 · doi:10.1109/tsmc.2020.2980034
[5] NieX, ZhengWX. Multistability and instability of neural networks with discontinuous nonmonotonic piecewise linear activation functions. IEEE Trans Neural Netw Learn Syst. 2015;26(11):2901‐2913. https://doi.org/10.1109/tnnls.2015.2458978 · doi:10.1109/tnnls.2015.2458978
[6] YangD, ZongG, NguangSK, ZhaoX. Bumpless transfer \(H_{\operatorname{\infty}}\) anti‐disturbance control of switching Markovian LPV systems under the hybrid switching. IEEE Trans Cybern. 2020. https://doi.org/10.1109/tcyb.2020.3024988 · doi:10.1109/tcyb.2020.3024988
[7] ZongG, RenH, KarimiHR. Event‐triggered communication and annular finite‐time \(H_{\operatorname{\infty}}\) filtering for networked switched systems. IEEE Trans Cybern. 2021;51(1):309‐317. https://doi.org/10.1109/tcyb.2020.3010917 · doi:10.1109/tcyb.2020.3010917
[8] DongS, RenW, WuZ, SuH. H_∞ output consensus for Markov jump multiagent systems with uncertainties. IEEE Trans Cybern. 2020;50(5):2264‐2273. https://doi.org/10.1109/tcyb.2018.2884762 · doi:10.1109/tcyb.2018.2884762
[9] ZhuangG, SuS‐F, XiaJ, SunW. HMM‐based asynchronous \(H_{\operatorname{\infty}}\) filtering for fuzzy singular Markovian switching systems with retarded time‐varying delays. IEEE Trans Cybern. 2021;51(3):1189‐1203. https://doi.org/10.1109/tcyb.2020.2977127 · doi:10.1109/tcyb.2020.2977127
[10] YangD, ZongG, SuS‐F. H_∞ tracking control of uncertain Markovian hybrid switching systems: a fuzzy switching dynamic adaptive control approach. IEEE Trans Cybern. 2020. https://doi.org/10.1109/tcyb.2020.3025148 · doi:10.1109/tcyb.2020.3025148
[11] LiuM, HoDWC, ShiP. Adaptive fault‐tolerant compensation control for Markovian jump systems with mismatched external disturbance. Automatica. 2015;58:5‐14. https://doi.org/10.1016/j.automatica.2015.04.022 · Zbl 1326.93020 · doi:10.1016/j.automatica.2015.04.022
[12] LiH, ShiP, YaoD, WuL. Observer‐based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica. 2016;64:133‐142. https://doi.org/10.1016/j.automatica.2015.11.007 · Zbl 1329.93126 · doi:10.1016/j.automatica.2015.11.007
[13] WangZ, YuanY, YangH. Adaptive fuzzy tracking control for strict‐feedback Markov jumping nonlinear systems with actuator failures and unmodeled dynamics. IEEE Trans Cybern. 2020;50(1):126‐139. https://doi.org/10.1109/tcyb.2018.2865677 · doi:10.1109/tcyb.2018.2865677
[14] LiuH, PanY, CaoJ, WangH, ZhouY. Adaptive neural network backstepping control of fractional‐order nonlinear systems with actuator faults. IEEE Trans Neural Netw Learn Syst. 2020;31(12):5166‐5177. https://doi.org/10.1109/tnnls.2020.2964044 · doi:10.1109/tnnls.2020.2964044
[15] LiM, GuoJ, XiangZ. Global adaptive finite‐time stabilization for a class of p ‐normal nonlinear systems via an event‐triggered strategy. Int J Robust Nonlinear Control. 2020;30(10):4059‐4074. https://doi.org/10.1002/rnc.4983 · Zbl 1466.93144 · doi:10.1002/rnc.4983
[16] SunH, LiY, ZongG, HouL. Disturbance attenuation and rejection for stochastic Markovian jump system with partially known transition probabilities. Automatica. 2018;89:349‐357. https://doi.org/10.1016/j.automatica.2017.12.046 · Zbl 1388.93100 · doi:10.1016/j.automatica.2017.12.046
[17] ZhuangG, SunW, SuS‐F, XiaJ. Asynchronous feedback control for delayed fuzzy degenerate jump systems under observer‐based event‐driven characteristic. IEEE Trans Fuzzy Syst. 2020. https://doi.org/10.1109/tfuzz.2020.3027336 · doi:10.1109/tfuzz.2020.3027336
[18] LiQ, LiangJ. Dissipativity of the stochastic Markovian switching CVNNs with randomly occurring uncertainties and general uncertain transition rates. Int J Syst Sci. 2020;51(6):1102‐1118. https://doi.org/10.1080/00207721.2020.1752418 · Zbl 1483.93684 · doi:10.1080/00207721.2020.1752418
[19] LiH, WuY, ChenM. Adaptive fault‐tolerant tracking control for discrete‐time multiagent systems via reinforcement learning algorithm. IEEE Trans Cybern. 2021;51(3):1163‐1174. https://doi.org/10.1109/tcyb.2020.2982168 · doi:10.1109/tcyb.2020.2982168
[20] PanY, DuP, XueH, LamH‐K. Singularity‐free fixed‐time fuzzy control for robotic systems with user‐defined performance. IEEE Trans Fuzzy Syst. 2020. https://doi.org/10.1109/tfuzz.2020.2999746 · doi:10.1109/tfuzz.2020.2999746
[21] HashemiM, ShahgholianG. Distributed robust adaptive control of high order nonlinear multi agent systems. ISA Trans. 2018;74:14‐27. https://doi.org/10.1016/j.isatra.2018.01.023 · doi:10.1016/j.isatra.2018.01.023
[22] NaderolasliA, HashemiM, ShojaeiK. Approximation‐based adaptive fault compensation backstepping control of fractional‐order nonlinear systems: an output‐feedback scheme. Int J Adapt Control Signal Process. 2020;34(3):298‐313. https://doi.org/10.1002/acs.3084 · Zbl 1469.93063 · doi:10.1002/acs.3084
[23] WangZ, YuanJ, PanY, CheD. Adaptive neural control for high order Markovian jump nonlinear systems with unmodeled dynamics and dead zone inputs. Neurocomputing. 2017;247:62‐72. https://doi.org/10.1016/j.neucom.2017.03.041 · doi:10.1016/j.neucom.2017.03.041
[24] CaoB, NieX. Adaptive neural networks control for Markov jump nonlinear systems with nonstrict‐feedback form and uncertain transition rate. Paper presented at: Proceedings of the 2020 39th Chinese Control Conference; 2020:1963‐1968; IEEE, Shenyang, China.
[25] ZhuangG, XiaJ, FengJ, SunW, ZhangB. Admissibilization for implicit jump systems with mixed retarded delays based on reciprocally convex integral inequality and Barbalat’s lemma. IEEE Trans Syst Man Cybern Syst. 2020. https://doi.org/10.1109/tsmc.2020.2964057 · doi:10.1109/tsmc.2020.2964057
[26] CostaOLV (ed.), FragosoMD (ed.), TodorovMG (ed.), eds. A detector‐based approach for the \(H_2\) control of Markov jump linear systems with partial information. IEEE Trans Autom Control. 2015;60(5):1219‐1234. https://doi.org/10.1109/tac.2014.2366253 · Zbl 1360.93761 · doi:10.1109/tac.2014.2366253
[27] OliveiraAM, CostaOLV. H_∞ filtering for Markov jump linear systems with partial information on the jump parameter. IFAC J Syst Control. 2017;1:13‐23. https://doi.org/10.1016/j.ifacsc.2017.05.002 · doi:10.1016/j.ifacsc.2017.05.002
[28] LiuM, WangG. Observer‐based controller design for discrete‐time Markovian jump linear systems with partial information. IEEE Access. 2019;7:41145‐41153. https://doi.org/10.1109/access.2019.2905963 · doi:10.1109/access.2019.2905963
[29] OliveiraAM, CostaOLV. An iterative approach for the discrete‐time dynamic control of Markov jump linear systems with partial information. Int J Robust Nonlinear Control. 2019;30(2):495‐511. https://doi.org/10.1002/rnc.4771 · Zbl 1440.93242 · doi:10.1002/rnc.4771
[30] CarvalhoLDP, OliveiraAM, CostaOLV. H_2/H_∞ simultaneous fault detection and control for Markov jump linear systems with partial observation. IEEE Access. 2020;(8):11979‐11990. https://doi.org/10.1109/access.2020.2964163 · doi:10.1109/access.2020.2964163
[31] RodriguesCCG, TodorovMG, FragosoMD. H_∞ filtering for Markovian jump linear systems with mode partial information. Paper presented at: Proceedings of the 2016 IEEE 55th Conference on Decision and Control; 2016; IEEE, Las Vegas, NV.
[32] ZhangL, NingZ, ShiP. Input‐output approach to control for fuzzy Markov jump systems with time‐varying delays and uncertain packet dropout rate. IEEE Trans Cybern. 2015;45(11):2449‐2460. https://doi.org/10.1109/tcyb.2014.2374694 · doi:10.1109/tcyb.2014.2374694
[33] ZhangJ, LiS, XiangZ. Adaptive fuzzy finite‐time fault‐tolerant control for switched nonlinear large‐scale systems with actuator and sensor faults. J Frankl Inst. 2020;357(16):11629‐11644. https://doi.org/10.1016/j.jfranklin.2019.09.005 · Zbl 1450.93029 · doi:10.1016/j.jfranklin.2019.09.005
[34] MaH, ZhouQ, BaiL, LiangH. Observer‐based adaptive fuzzy fault‐tolerant control for stochastic nonstrict‐feedback nonlinear systems with input quantization. IEEE Trans Syst Man Cybern Syst. 2019;49(2):287‐298. https://doi.org/10.1109/tsmc.2018.2833872 · doi:10.1109/tsmc.2018.2833872
[35] LiangH, GuoX, PanY, HuangT. Event‐triggered fuzzy bipartite tracking control for network systems based on distributed reduced‐order observers. IEEE Trans Fuzzy Syst. 2020. https://doi.org/10.1109/tfuzz.2020.2982618 · doi:10.1109/tfuzz.2020.2982618
[36] YaoX, GuoL. Composite disturbance‐observer‐based output feedback control and passive control for Markovian jump systems with multiple disturbances. IET Control Theory Appl. 2014;8(10):873‐881. https://doi.org/10.1049/iet‐cta.2013.0659 · doi:10.1049/iet‐cta.2013.0659
[37] ShojaeiF, ArefiMM, KhayatianA, KarimiHR. Observer‐based fuzzy adaptive dynamic surface control of uncertain nonstrict feedback systems with unknown control direction and unknown dead‐zone. IEEE Trans Syst, Man Cybern Syst. 2019;49(11):2340‐2351. https://doi.org/10.1109/tsmc.2018.2852725 · doi:10.1109/tsmc.2018.2852725
[38] ChenJ, LinC, ChenB, ZhangZ. Observer‐based adaptive neural control for a class of nonlinear singular systems. Int J Robust Nonlinear Control. 2020;30(10):4043‐4058. https://doi.org/10.1002/rnc.4980 · Zbl 1466.93085 · doi:10.1002/rnc.4980
[39] JanbaziV, HashemiM. Design of disturbance observer based on adaptive‐neural control for large‐scale time‐delay systems in the presence of actuator fault and unknown dead zone. Int J Adapt Control Signal Process. 2020;35(2):285‐309. https://doi.org/10.1002/acs.3204 · Zbl 1543.93159 · doi:10.1002/acs.3204
[40] ChenW, WangJ, MaK, WangT. Adaptive event‐triggered neural control for nonlinear uncertain system with input constraint. Int J Robust Nonlinear Control. 2020;30(10):3801‐3815. https://doi.org/10.1002/rnc.4965 · Zbl 1466.93086 · doi:10.1002/rnc.4965
[41] JiangB, LuJ, LiuY, CaoJ. Periodic event‐triggered adaptive control for attitude stabilization under input saturation. IEEE Trans Circuits Syst I Reg Pap. 2020;67(1):249‐258. https://doi.org/10.1109/tcsi.2019.2939375 · Zbl 1468.93127 · doi:10.1109/tcsi.2019.2939375
[42] ChenB, ZhangH, LinC. Observer‐based adaptive neural network control for nonlinear systems in nonstrict‐feedback form. IEEE Trans Neural Netw Learn Syst. 2016;27(1):89‐98. https://doi.org/10.1109/tnnls.2015.2412121 · doi:10.1109/tnnls.2015.2412121
[43] WenC, ZhouJ, LiuZ, SuH. Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans Autom Control. 2011;56(7):1672‐1678. https://doi.org/10.1109/tac.2011.2122730 · Zbl 1368.93317 · doi:10.1109/tac.2011.2122730
[44] NieX, CaoJ. Multistability of second‐order competitive neural networks with nondecreasing saturated activation functions. IEEE Trans Neural Netw. 2011;22(11):1694‐1708. https://doi.org/10.1109/tnn.2011.2164934 · doi:10.1109/tnn.2011.2164934
[45] MaJ, XuS, ZhuangG, WeiY, ZhangZ. Adaptive neural network tracking control for uncertain nonlinear systems with input delay and saturation. Int J Robust Nonlinear Control. 2020;30(7):2593‐2610. https://doi.org/10.1002/rnc.4887 · Zbl 1465.93107 · doi:10.1002/rnc.4887
[46] LiH, BaiL, ZhouQ, LuR, WangL. Adaptive fuzzy control of stochastic nonstrict‐feedback nonlinear systems with input saturation. IEEE Trans Syst Man Cybern Syst. 2017;47(8):2185‐2197. https://doi.org/10.1109/tsmc.2016.2635678 · doi:10.1109/tsmc.2016.2635678
[47] WangH, LiuPX, ShiP. Observer‐based fuzzy adaptive output‐feedback control of stochastic nonlinear multiple time‐delay systems. IEEE Trans Cybern. 2017;47(9):2568‐2578. https://doi.org/10.1109/tcyb.2017.2655501 · doi:10.1109/tcyb.2017.2655501
[48] SunY, ChenB, LinC, WangH, ZhouS. Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach. Inf Sci. 2016;369:748‐764. https://doi.org/10.1016/j.ins.2016.06.010 · Zbl 1429.93188 · doi:10.1016/j.ins.2016.06.010
[49] LiD, ChenCLP, LiuY, TongS. Neural network controller design for a class of nonlinear delayed systems with time‐varying full‐state constraints. IEEE Trans Neural Netw Learn Syst. 2019;30(9):2625‐2636. https://doi.org/10.1109/tnnls.2018.2886023 · doi:10.1109/tnnls.2018.2886023
[50] TamaševičiusA, NamajūnasA, ČenysA. Simple 4D chaotic oscillator. Electron Lett. 1996;32(11):957‐958. https://doi.org/10.1049/el:19960630 · doi:10.1049/el:19960630
[51] LiY, TongS. Adaptive fuzzy output constrained control design for multi‐input multioutput stochastic nonstrict‐feedback nonlinear systems. IEEE Trans Cybern. 2017;47(12):4086‐4095. https://doi.org/10.1109/tcyb.2016.2600263 · doi:10.1109/tcyb.2016.2600263
[52] LiY, SunK, TongS. Observer‐based adaptive fuzzy fault‐tolerant optimal control for SISO nonlinear systems. IEEE Trans Cybern. 2019;49(2):649‐661. https://doi.org/10.1109/tcyb.2017.2785801 · doi:10.1109/tcyb.2017.2785801
[53] GirosiF, PoggioT. Networks and the best approximation property. Biolog Cybern. 1990;63(3):169‐176. https://doi.org/10.1007/bf00195855 · Zbl 0714.94029 · doi:10.1007/bf00195855
[54] SannerRM, SlotineJ‐JE. Gaussian networks for direct adaptive control. IEEE Trans Neural Netw. 1992;3(6):837‐863. https://doi.org/10.1109/72.165588 · doi:10.1109/72.165588
[55] ZhangT, LinM, XiaX, YiY. Adaptive cooperative dynamic surface control of non‐strict feedback multi‐agent systems with input dead‐zones and actuator failures. Neurocomputing. 2021;442:48‐63. https://doi.org/10.1016/j.neucom.2021.02.039 · doi:10.1016/j.neucom.2021.02.039
[56] KhasminskiiR. Stochastic Stability of Differential Equations. Berlin/Heidelberg, Germany: Springer‐Verlag; 2011.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.