×

An iterative approach for the discrete-time dynamic control of Markov jump linear systems with partial information. (English) Zbl 1440.93242

Summary: The \(H_2\), \(H_\infty\) and mixed \(H_2/H_\infty\) dynamic output feedback control of Markov jump linear systems in a partial observation context is studied through an iterative approach. By partial information, we mean that neither the state variable \(x(k)\) nor the Markov chain \(\theta (k)\) are available to the controller. Instead, we assume that the controller relies only on an output \(y(k)\) and a measured variable \(\hat{\theta}(k)\) coming from a detector that provides the only information of the Markov chain \(\theta (k)\). To solve the problem, we resort to an iterative method that starts with a state-feedback controller and solves at each iteration a linear matrix inequality optimization problem. It is shown that this iterative algorithm yields to a nonincreasing sequence of upper bound costs so that it converges to a minimum value. The effectiveness of the iterative procedure is illustrated by means of two examples in which the conservatism between the upper bounds and actual costs is significantly reduced.

MSC:

93E03 Stochastic systems in control theory (general)
93B52 Feedback control
93C55 Discrete-time control/observation systems
93B36 \(H^\infty\)-control
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] BoukasEK. Stochastic Switching Systems: Analysis and Design. New York, NY: Birkhäuser Basel; 2006. · Zbl 1151.93028
[2] CostaOLV, FragosoMD, MarquesRP. Discrete‐Time Markov Jump Linear Systems. New York, NY: Springer‐Verlag London; 2005. · Zbl 1081.93001
[3] CostaOLV, FragosoMD, TodorovMG. Continuous‐Time Markov Jump Linear Systems. New York, NY: Springer‐Verlag Berlin Heidelberg; 2013. · Zbl 1277.60003
[4] DraganV, MorozanT, StoicaA‐M. Mathematical Methods in Robust Control of Linear Stochastic Systems. New York, NY: Springer; 2013. · Zbl 1296.93001
[5] GeromelJC, GonçalvesAPC, FioravantiAR. Dynamic output feedback control of discrete‐time Markov jump linear systems through linear matrix inequalities. SIAM J Control and Optim. 2009;48(2):573‐593. https://doi.org/10.1137/080715494 · Zbl 1194.93070 · doi:10.1137/080715494
[6] ValJB, GeromelJC, GonçalvesAPC. The H_2‐control for jump linear systems: cluster observations of the Markov state. Automatica. 2002;38(2). https://doi.org/10.1016/S0005-1098(01)00210-2 · Zbl 0991.93125 · doi:10.1016/S0005-1098(01)00210-2
[7] FioravantiAR, GonçalvesAPC, GeromelJC. Discrete‐time H_∞ output feedback for Markov jump systems with uncertain transition probabilities. Int J Robust Nonlinear Control. 2013;23(8):894‐902. https://doi.org/10.1002/rnc.2807 · Zbl 1270.93117 · doi:10.1002/rnc.2807
[8] MoraisCF, BragaMF, OliveiraRCLF, PeresPLD. LMI‐based design of H_∞ dynamic output feedback controllers for MJLS with uncertain transition probabilities. In: American Control Conference (ACC). IEEE; 2016; New York, NY.
[9] MoraisCF, BragaMF, OliveiraRCLF, PeresPLD. Reduced‐order dynamic output feedback control of uncertain discrete‐time Markov jump linear systems. Int J Control. 2017;90(11):2368‐2383. https://doi.org/10.1080/00207179.2016.1245871 · Zbl 1380.93233 · doi:10.1080/00207179.2016.1245871
[10] CostaOLV, FragosoMD, TodorovMG. A detector‐based approach for the H_2 control of Markov jump linear systems with partial information. IEEE Trans Autom Control. 2015;60(5):1219‐1234. https://doi.org/10.1109/TAC.2014.2366253 · Zbl 1360.93761 · doi:10.1109/TAC.2014.2366253
[11] SongJ, NiuY, ZouY. Asynchronous output feedback control of time‐varying Markovian jump systems within a finite‐time interval. J Franklin Inst. 2017;354(15):6747‐6765. https://doi.org/10.1016/j.jfranklin.2017.08.028 · Zbl 1373.93314 · doi:10.1016/j.jfranklin.2017.08.028
[12] SongJ, NiuY, ZouY. Asynchronous sliding mode control of Markovian jump systems with time‐varying delays and partly accessible mode detection probabilities. Automatica. 2018;93:33‐41. https://doi.org/10.1016/j.automatica.2018.03.037 · Zbl 1400.93052 · doi:10.1016/j.automatica.2018.03.037
[13] OguraM, CetinkayaA, HayakawaT, PreciadoVM. State‐feedback control of Markov jump linear systems with hidden‐Markov mode observation. Automatica. 2018;89:65‐72. https://doi.org/10.1016/j.automatica.2017.11.022 · Zbl 1387.93172 · doi:10.1016/j.automatica.2017.11.022
[14] OliveiraAM, CostaOLV, DaafouzJ. Design of stabilizing dynamic output feedback controllers for hidden Markov jump linear systems. IEEE Control Syst Lett. 2018;2(2):278‐283.
[15] OliveiraAM, CostaOLV, DaafouzJ. \( \mathcal{H}_2\) dynamic output feedback control for hidden Markov jump linear systems. In: Yin George (ed.), Zhang Qing (ed.), eds. Modeling, Stochastic Control, Optimization, and Applications. Cham, Switzerland: Springer International Publishing; 2019:509‐532. The IMA Volumes in Mathematics and Its Applications Book Series; vol. 164. · Zbl 1427.93069
[16] DoyleJC, GloverK, KhargonekarPP, FrancisBA. State‐space solutions to standard H_2 and H_∞ control problems. IEEE Trans Autom Control. 1989;34(8):831‐847. https://doi.org/10.1109/9.29425 · Zbl 0698.93031 · doi:10.1109/9.29425
[17] GahinetP, NemirovskiA, LaubAJ, ChilaliM. LMI Control Toolbox: For use With MATLAB. User’s Guide. Version 1. Natick, MA: MathWorks; 1995.
[18] AberkaneS, SauterD, PonsartJC. Output feedback robust H_∞ control of uncertain active fault tolerant control systems via convex analysis. Int J Control. 2008;81(2):252‐263. https://doi.org/10.1080/00207170701535959 · Zbl 1152.93359 · doi:10.1080/00207170701535959
[19] AberkaneS, PonsartJC, SauterD. Multiobjective output feedback control of a class of stochastic hybrid systems with state‐dependent noise. Math Prob Eng. 2007;2007(31561):26. https://doi.org/10.1155/2007/31561 · Zbl 1148.93017 · doi:10.1155/2007/31561
[20] GeromelJC, BernussouJ, deOliveiraMC. H_2‐norm optimization with constrained dynamic output feedback controllers: decentralized and reliable control. IEEE Trans Autom Control. 1999;44(7):1449‐1454. https://doi.org/10.1109/9.774121 · Zbl 0954.93003 · doi:10.1109/9.774121
[21] LiuX, MaG, PagillaPR, GeSS. Dynamic output feedback asynchronous control of networked Markovian jump systems. IEEE Trans Syst Man Cybern Syst. 2018:1‐11. https://doi.org/10.1109/TSMC.2018.2827166 · doi:10.1109/TSMC.2018.2827166
[22] SongJ, WangZ, NiuY. Static output‐feedback sliding mode control under round‐robin protocol. Int J Robust Nonlinear Control. 2018;28(18):5841‐5857. https://doi.org/10.1002/rnc.4350 · Zbl 1405.93065 · doi:10.1002/rnc.4350
[23] RossSM. Introduction to Probability Models. 10th ed. San Diego, CA: Academic Press, Inc; 2010. · Zbl 1184.60002
[24] OliveiraAM, CostaOLV. H_2‐filtering for discrete‐time hidden Markov jump systems. Int J Control. 2017;90(3):599‐615. https://doi.org/10.1080/00207179.2016.1186844 · Zbl 1359.93499 · doi:10.1080/00207179.2016.1186844
[25] TodorovMG, FragosoMD, CostaOLV. Detector‐based H_∞ results for discrete‐time Markov jump linear systems with partial observations. Automatica. 2018;91:159‐172. https://doi.org/10.1016/j.automatica.2018.01.034 · Zbl 1387.93148 · doi:10.1016/j.automatica.2018.01.034
[26] VidyasagarM. Hidden Markov Processes: Theory and Applications to Biology. Princeton, NJ: Princeton University Press; 2014. · Zbl 1300.60013
[27] MahmoudM, JiangJ, ZhangY. Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis. Berlin, Germany: Springer Verlag; 2003. · Zbl 1036.93002
[28] GonçalvesAPC, FioravantiAR, GeromelJC. Markov jump linear systems and filtering through network transmitted measurements. Signal Process. 2010;90(10):2842‐2850. https://doi.org/10.1016/j.sigpro.2010.04.007 · Zbl 1197.94056 · doi:10.1016/j.sigpro.2010.04.007
[29] BlondelVD, TsitsiklisJN. A survey of computational complexity results in systems and control. Automatica. 2000;36(9):1249‐1274. https://doi.org/10.1016/S0005-1098(00)00050-9 · Zbl 0989.93006 · doi:10.1016/S0005-1098(00)00050-9
[30] BoydS, GhaouiLE, FeronE, BalakrishnanV. Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: Society for Industrial and Applied Mathematics; 1994. · Zbl 0816.93004
[31] OliveiraAM, CostaOLV. Mixed \(\mathcal{H}_2 / \mathcal{H}_\infty\) control of hidden Markov jump systems. Int J Robust Nonlinear Control. 2018;28(4):1261‐1280. https://doi.org/10.1002/rnc.3952 · Zbl 1390.93722 · doi:10.1002/rnc.3952
[32] ZhangYM, JiangJ. Active fault‐tolerant control system against partial actuator failures. IEE Proc Control Theory Appl. 2002;149(1):95‐104. https://doi.org/10.1049/ip-cta:20020110 · doi:10.1049/ip-cta:20020110
[33] OliveiraMC, GeromelJC, BernussouJ. Extended H_2/H_∞ characterizations and controller parametrizations for discrete‐time systems. Int J Control. 2002;75(9):666‐679. https://doi.org/10.1080/00207170210140212 · Zbl 1029.93020 · doi:10.1080/00207170210140212
[34] SongJ, NiuY, ZhaoH, CaoZ. Finite‐time l_2−l_∞ control of Markovian jump linear systems with partly accessible hidden information via asynchronous output feedback. In: Asian Control Conference (ASCC). IEEE; 2017; New York, NY.
[35] LiY, ZhangW, LiuX‐K. \( \mathcal{H}_-\) index for discrete‐time stochastic systems with Markovian jump and multiplicative noise. Automatica. 2018;90:286‐293. https://doi.org/10.1016/j.automatica.2017.12.032 · Zbl 1387.93145 · doi:10.1016/j.automatica.2017.12.032
[36] LiuJ, WangJL, YangG‐H. An LMI approach to minimum sensitivity analysis with application to fault detection. Automatica. 2005;41(11):1995‐2004. https://doi.org/10.1016/j.automatica.2005.06.005 · Zbl 1087.93019 · doi:10.1016/j.automatica.2005.06.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.