×

Quantum corrections to the primordial tensor spectrum: open EFTs & Markovian decoupling of UV modes. (English) Zbl 1522.83410

Summary: Perturbative quantum corrections to primordial power spectra are important for testing the robustness and the regime of validity of inflation as an effective field theory. Although this has been done extensively for the density power spectrum (and, to some extent, for the tensor spectrum) using loop corrections, we do so in an open quantum system approach to the problem. Specifically, we calculate the first-order corrections to the primordial gravitational wave spectrum due to (cubic) tensor interactions alone. We show that our results match expectations from standard loop corrections only in the strict Markovian limit, and therefore, establish a systematic way to relax this approximation in the future, as is generally necessary for gravitational systems.

MSC:

83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
83E05 Geometrodynamics and the holographic principle
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T20 Quantum field theory on curved space or space-time backgrounds

References:

[1] Weinberg, S., Quantum contributions to cosmological correlations, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.043514
[2] Weinberg, S., Quantum contributions to cosmological correlations. II. Can these corrections become large?, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.023508
[3] Martin, J.; Brandenberger, RH, The TransPlanckian problem of inflationary cosmology, Phys. Rev. D, 63 (2001) · doi:10.1103/PhysRevD.63.123501
[4] Brandenberger, RH; Martin, J., The Robustness of inflation to changes in superPlanck scale physics, Mod. Phys. Lett. A, 16, 999 (2001) · Zbl 1138.83379 · doi:10.1142/S0217732301004170
[5] Brandenberger, R., Limitations of an effective field theory treatment of early Universe cosmology, Phil. Trans. Roy. Soc. Lond. A, 380, 20210178 (2022)
[6] Brandenberger, R., Trans-Planckian Censorship Conjecture and Early Universe Cosmology, LHEP, 2021, 198 (2021) · doi:10.31526/LHEP.2021.198
[7] Berera, A.; Brahma, S.; Calderón, JR, Role of trans-Planckian modes in cosmology, JHEP, 08, 071 (2020) · Zbl 1454.85007 · doi:10.1007/JHEP08(2020)071
[8] Kaloper, N.; Scargill, J., Quantum Cosmic No-Hair Theorem and Inflation, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.103514
[9] Burgess, CP; de Alwis, SP; Quevedo, F., Cosmological Trans-Planckian Conjectures are not Effective, JCAP, 05, 037 (2021) · Zbl 1485.85024 · doi:10.1088/1475-7516/2021/05/037
[10] G. Shiu, Inflation as a probe of trans-Planckian physics: A brief review and progress report, J. Phys. Conf. Ser.18 (2005) 188 [INSPIRE].
[11] Senatore, L.; Zaldarriaga, M., On Loops in Inflation, JHEP, 12, 008 (2010) · Zbl 1294.83099 · doi:10.1007/JHEP12(2010)008
[12] Pimentel, GL; Senatore, L.; Zaldarriaga, M., On Loops in Inflation III: Time Independence of zeta in Single Clock Inflation, JHEP, 07, 166 (2012) · doi:10.1007/JHEP07(2012)166
[13] Adshead, P.; Burgess, CP; Holman, R.; Shandera, S., Power-counting during single-field slow-roll inflation, JCAP, 02, 016 (2018) · Zbl 1527.83099 · doi:10.1088/1475-7516/2018/02/016
[14] Burgess, CP; Holman, R.; Tasinato, G.; Williams, M., EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical, JHEP, 03, 090 (2015) · Zbl 1388.83894 · doi:10.1007/JHEP03(2015)090
[15] Boyanovsky, D., Effective field theory during inflation. II. Stochastic dynamics and power spectrum suppression, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.043501
[16] Boyanovsky, D., Effective field theory during inflation: Reduced density matrix and its quantum master equation, Phys. Rev. D, 92 (2015) · Zbl 1452.82007 · doi:10.1103/PhysRevD.92.023527
[17] C. P. Burgess, R. Holman and G. Tasinato, Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation, JHEP01 (2016) 153 [arXiv:1512.00169] [INSPIRE].
[18] Hollowood, TJ; McDonald, JI, Decoherence, discord and the quantum master equation for cosmological perturbations, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.103521
[19] Shandera, S.; Agarwal, N.; Kamal, A., Open quantum cosmological system, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.083535
[20] Brahma, S.; Alaryani, O.; Brandenberger, R., Entanglement entropy of cosmological perturbations, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.043529
[21] Brahma, S.; Brandenberger, R.; Wang, Z., Entanglement entropy of cosmological perturbations for S-brane Ekpyrosis, JCAP, 03, 094 (2021) · Zbl 1485.83125 · doi:10.1088/1475-7516/2021/03/094
[22] Kaplanek, G.; Burgess, CP, Hot Accelerated Qubits: Decoherence, Thermalization, Secular Growth and Reliable Late-time Predictions, JHEP, 03, 008 (2020) · Zbl 1435.83052 · doi:10.1007/JHEP03(2020)008
[23] Kaplanek, G.; Burgess, CP, Hot Cosmic Qubits: Late-Time de Sitter Evolution and Critical Slowing Down, JHEP, 02, 053 (2020) · doi:10.1007/JHEP02(2020)053
[24] Nelson, E., Quantum Decoherence During Inflation from Gravitational Nonlinearities, JCAP, 03, 022 (2016) · doi:10.1088/1475-7516/2016/03/022
[25] Gong, J-O; Seo, M-S, Quantum non-linear evolution of inflationary tensor perturbations, JHEP, 05, 021 (2019) · Zbl 1416.83153 · doi:10.1007/JHEP05(2019)021
[26] Martin, J.; Vennin, V., Non Gaussianities from Quantum Decoherence during Inflation, JCAP, 06, 037 (2018) · Zbl 1527.83154 · doi:10.1088/1475-7516/2018/06/037
[27] Martin, J.; Vennin, V., Observational constraints on quantum decoherence during inflation, JCAP, 05, 063 (2018) · Zbl 1536.83191 · doi:10.1088/1475-7516/2018/05/063
[28] Balasubramanian, V.; McDermott, MB; Van Raamsdonk, M., Momentum-space entanglement and renormalization in quantum field theory, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.045014
[29] Agon, C.; Balasubramanian, V.; Kasko, S.; Lawrence, A., Coarse Grained Quantum Dynamics, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.025019
[30] Senatore, L.; Zaldarriaga, M., The constancy of ζ in single-clock Inflation at all loops, JHEP, 09, 148 (2013) · doi:10.1007/JHEP09(2013)148
[31] Adshead, P.; Easther, R.; Lim, EA, The ‘in-in’ Formalism and Cosmological Perturbations, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.083521
[32] Fröb, MB; Roura, A.; Verdaguer, E., One-loop gravitational wave spectrum in de Sitter spacetime, JCAP, 08, 009 (2012) · doi:10.1088/1475-7516/2012/08/009
[33] Tan, HS, One-loop corrections to the primordial tensor spectrum from massless isocurvature fields, JHEP, 10, 186 (2020) · doi:10.1007/JHEP10(2020)186
[34] Tan, L.; Tsamis, NC; Woodard, RP, Graviton self-energy from gravitons in cosmology, Class. Quant. Grav., 38 (2021) · Zbl 1482.83057 · doi:10.1088/1361-6382/ac0233
[35] Park, S.; Prokopec, T.; Woodard, RP, Quantum Scalar Corrections to the Gravitational Potentials on de Sitter Background, JHEP, 01, 074 (2016) · Zbl 1388.83138 · doi:10.1007/JHEP01(2016)074
[36] del Rio, A.; Durrer, R.; Patil, SP, Tensor Bounds on the Hidden Universe, JHEP, 12, 094 (2018)
[37] Sloth, MS, On the one loop corrections to inflation and the CMB anisotropies, Nucl. Phys. B, 748, 149 (2006) · Zbl 1186.83171 · doi:10.1016/j.nuclphysb.2006.04.029
[38] Seery, D., One-loop corrections to a scalar field during inflation, JCAP, 11, 025 (2007) · doi:10.1088/1475-7516/2007/11/025
[39] Kahya, EO; Onemli, VK; Woodard, RP, The Zeta-Zeta Correlator Is Time Dependent, Phys. Lett. B, 694, 101 (2011) · doi:10.1016/j.physletb.2010.09.050
[40] Tanaka, T.; Urakawa, Y., Loops in inflationary correlation functions, Class. Quant. Grav., 30 (2013) · Zbl 1284.83013 · doi:10.1088/0264-9381/30/23/233001
[41] Syu, W-C; Lee, D-S; Ng, K-W, Quantum loop effects to the power spectrum of primordial perturbations during ultra slow-roll inflation, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.025013
[42] Cheng, S-L; Lee, D-S; Ng, K-W, Power spectrum of primordial perturbations during ultra-slow-roll inflation with back reaction effects, Phys. Lett. B, 827 (2022) · Zbl 1487.83117 · doi:10.1016/j.physletb.2022.136956
[43] Maldacena, JM, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP, 05, 013 (2003) · doi:10.1088/1126-6708/2003/05/013
[44] Albrecht, A.; Ferreira, P.; Joyce, M.; Prokopec, T., Inflation and squeezed quantum states, Phys. Rev. D, 50, 4807 (1994) · doi:10.1103/PhysRevD.50.4807
[45] Prokopec, T.; Rigopoulos, G., Path Integral for Inflationary Perturbations, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.023529
[46] Cheung, C.; Creminelli, P.; Fitzpatrick, AL; Kaplan, J.; Senatore, L., The Effective Field Theory of Inflation, JHEP, 03, 014 (2008) · doi:10.1088/1126-6708/2008/03/014
[47] G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun. Math. Phys.48 (1976) 119 [INSPIRE]. · Zbl 0343.47031
[48] S. Prudhoe and S. Shandera, Classifying the non-Markovian, non-time-local, and entangling dynamics of an open quantum system, arXiv:2201.07080 [INSPIRE].
[49] Heinz-Peter Breuer and Francesco Petruccione, The Theory of Open Quantum Systems, Oxford University Press, Oxford, U.K. (2007) [DOI]. · Zbl 1223.81001
[50] Daniel Boyanovsky and David Jasnow. Heisenberg-langevin versus quantum master equation, Phys. Rev. A96 (2017) 062108.
[51] Gong, J-O; Seo, M-S, Quantum nature of Wigner function for inflationary tensor perturbations, JHEP, 03, 060 (2020) · Zbl 1435.83211 · doi:10.1007/JHEP03(2020)060
[52] S. Brahma, A. Berera and J. Calderón-Figueroa, Universal signature of quantum entanglement across cosmological distances, arXiv:2107.06910 [INSPIRE].
[53] G. Cynolter and E. Lendvai, Cutoff Regularization Method in Gauge Theories, arXiv:1509.07407 [INSPIRE]. · Zbl 1284.81307
[54] Senatore, L.; Zaldarriaga, M., On Loops in Inflation II: IR Effects in Single Clock Inflation, JHEP, 01, 109 (2013) · doi:10.1007/JHEP01(2013)109
[55] Giddings, SB; Sloth, MS, Semiclassical relations and IR effects in de Sitter and slow-roll space-times, JCAP, 01, 023 (2011) · doi:10.1088/1475-7516/2011/01/023
[56] Byrnes, CT; Gerstenlauer, M.; Hebecker, A.; Nurmi, S.; Tasinato, G., Inflationary Infrared Divergences: Geometry of the Reheating Surface versus δN Formalism, JCAP, 08, 006 (2010) · doi:10.1088/1475-7516/2010/08/006
[57] Seery, D., Infrared effects in inflationary correlation functions, Class. Quant. Grav., 27 (2010) · Zbl 1190.83128 · doi:10.1088/0264-9381/27/12/124005
[58] Giddings, SB; Sloth, MS, Cosmological observables, IR growth of fluctuations, and scale-dependent anisotropies, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.063528
[59] Gerstenlauer, M.; Hebecker, A.; Tasinato, G., Inflationary Correlation Functions without Infrared Divergences, JCAP, 06, 021 (2011) · doi:10.1088/1475-7516/2011/06/021
[60] Higuchi, A.; Marolf, D.; Morrison, IA, de Sitter invariance of the dS graviton vacuum, Class. Quant. Grav., 28 (2011) · Zbl 1232.83046 · doi:10.1088/0264-9381/28/24/245012
[61] Donoghue, JF, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D, 50, 3874 (1994) · doi:10.1103/PhysRevD.50.3874
[62] Hsiang, J-T; Hu, B-L, NonMarkovianity in cosmology: Memories kept in a quantum field, Annals Phys., 434 (2021) · Zbl 1482.83134 · doi:10.1016/j.aop.2021.168656
[63] Tsamis, NC; Woodard, RP, Stochastic quantum gravitational inflation, Nucl. Phys. B, 724, 295 (2005) · Zbl 1178.83026 · doi:10.1016/j.nuclphysb.2005.06.031
[64] Sadao Nakajima. On quantum theory of transport phenomena: steady diffusion, Prog. Theor. Phys.20 (1958) 948. · Zbl 0084.21505
[65] Robert Zwanzig. Ensemble method in the theory of irreversibility, J. Chem. Phys.33 (1960) 1338.
[66] S. Brahma, Constraints on the duration of inflation from entanglement entropy bounds, arXiv:2104.02840 [INSPIRE].
[67] Dvali, G.; Gomez, C.; Zell, S., Quantum Breaking Bound on de Sitter and Swampland, Fortsch. Phys., 67, 1800094 (2019) · Zbl 1535.83124 · doi:10.1002/prop.201800094
[68] Brahma, S.; Dasgupta, K.; Tatar, R., de Sitter Space as a Glauber-Sudarshan State, JHEP, 02, 104 (2021) · Zbl 1468.81103 · doi:10.1007/JHEP02(2021)104
[69] Brahma, S.; Dasgupta, K.; Tatar, R., Four-dimensional de Sitter space is a Glauber-Sudarshan state in string theory, JHEP, 07, 114 (2021) · Zbl 1468.81103 · doi:10.1007/JHEP07(2021)114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.