×

Quantum non-linear evolution of inflationary tensor perturbations. (English) Zbl 1416.83153

Summary: We study the quantum mechanical evolution of the tensor perturbations during inflation with non-linear tensor interactions. We first obtain the Lindblad terms generated by non-linear interactions by tracing out unobservable sub-horizon modes. Then we calculate explicitly the reduced density matrix for the super-horizon modes, and show that the probability of maintaining the unitarity of the squeezed state decreases in time. The decreased probability is transferred to other elements of the reduced density matrix including off-diagonal ones, so the evolution of the reduced density matrix describes the quantum-to-classical transition of the tensor perturbations. This is different from the classicality accomplished by the squeezed state, the suppression of the non-commutative effect, which is originated from the quadratic, linear interaction, and also maintains the unitarity. The quantum-to-classical transition occurs within 5-10 \(e\)-folds, faster than the curvature perturbation.

MSC:

83F05 Relativistic cosmology
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T20 Quantum field theory on curved space or space-time backgrounds

References:

[1] A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev.D 23 (1981) 347 [INSPIRE]. · Zbl 1371.83202
[2] A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett.108B (1982) 389 [INSPIRE]. · doi:10.1016/0370-2693(82)91219-9
[3] A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett.48 (1982) 1220 [INSPIRE]. · doi:10.1103/PhysRevLett.48.1220
[4] Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].
[5] V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett.33 (1981) 532 [INSPIRE].
[6] A.H. Guth and S.Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett.49 (1982) 1110 [INSPIRE]. · doi:10.1103/PhysRevLett.49.1110
[7] S.W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe, Phys. Lett.115B (1982) 295 [INSPIRE]. · doi:10.1016/0370-2693(82)90373-2
[8] A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett.117B (1982) 175 [INSPIRE]. · doi:10.1016/0370-2693(82)90541-X
[9] J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous Creation of Almost Scale-Free Density Perturbations in an Inflationary Universe, Phys. Rev.D 28 (1983) 679 [INSPIRE].
[10] A.H. Guth and S.-Y. Pi, The Quantum Mechanics of the Scalar Field in the New Inflationary Universe, Phys. Rev.D 32 (1985) 1899 [INSPIRE].
[11] L. Grishchuk, H.A. Haus and K. Bergman, Generation of squeezed radiation from vacuum in the cosmos and the laboratory, Phys. Rev.D 46 (1992) 1440 [INSPIRE].
[12] A. Albrecht, Some remarks on quantum coherence, J. Mod. Opt.41 (1994) 2467 [hep-th/9402062] [INSPIRE]. · doi:10.1080/09500349414552311
[13] D. Polarski and A.A. Starobinsky, Semiclassicality and decoherence of cosmological perturbations, Class. Quant. Grav.13 (1996) 377 [gr-qc/9504030] [INSPIRE]. · Zbl 0849.53077
[14] L.P. Grishchuk and Y.V. Sidorov, Squeezed quantum states of relic gravitons and primordial density fluctuations, Phys. Rev.D 42 (1990) 3413 [INSPIRE].
[15] A. Albrecht, P. Ferreira, M. Joyce and T. Prokopec, Inflation and squeezed quantum states, Phys. Rev.D 50 (1994) 4807 [astro-ph/9303001] [INSPIRE].
[16] G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun. Math. Phys.48 (1976) 119 [INSPIRE]. · Zbl 0343.47031 · doi:10.1007/BF01608499
[17] T. Banks, L. Susskind and M.E. Peskin, Difficulties for the Evolution of Pure States Into Mixed States, Nucl. Phys.B 244 (1984) 125 [INSPIRE].
[18] A.A. Starobinsky, Stochastic de Sitter (Inflationary) Stage In The Early Universe, Lect. Notes Phys.246 (1986) 107 [INSPIRE]. · doi:10.1007/3-540-16452-9_6
[19] P. Pearle, Simple derivation of the Lindblad equation, Eur. J. Phys.33 (2012) 805 [arXiv:1204.2016]. · Zbl 1271.81094 · doi:10.1088/0143-0807/33/4/805
[20] H.F. Dowker and J.J. Halliwell, The Quantum mechanics of history: The Decoherence functional in quantum mechanics, Phys. Rev.D 46 (1992) 1580 [INSPIRE].
[21] M. Gell-Mann and J.B. Hartle, Classical equations for quantum systems, Phys. Rev.D 47 (1993) 3345 [gr-qc/9210010] [INSPIRE].
[22] M. Gell-Mann and J.B. Hartle, Quantum Mechanics in the Light of Quantum Cosmology, arXiv:1803.04605 [INSPIRE].
[23] W.H. Zurek, Decoherence, einselection and the quantum origins of the classical, Rev. Mod. Phys.75 (2003) 715 [INSPIRE]. · Zbl 1205.81031 · doi:10.1103/RevModPhys.75.715
[24] M. Schlosshauer, Decoherence, the measurement problem and interpretations of quantum mechanics, Rev. Mod. Phys.76 (2004) 1267 [quant-ph/0312059] [INSPIRE].
[25] C.P. Burgess, R. Holman and D. Hoover, Decoherence of inflationary primordial fluctuations, Phys. Rev.D 77 (2008) 063534 [astro-ph/0601646] [INSPIRE].
[26] C.P. Burgess, R. Holman, G. Tasinato and M. Williams, EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical, JHEP03 (2015) 090 [arXiv:1408.5002] [INSPIRE]. · Zbl 1388.83894 · doi:10.1007/JHEP03(2015)090
[27] E. Nelson, Quantum Decoherence During Inflation from Gravitational Nonlinearities, JCAP03 (2016) 022 [arXiv:1601.03734] [INSPIRE]. · doi:10.1088/1475-7516/2016/03/022
[28] S. Shandera, N. Agarwal and A. Kamal, Open quantum cosmological system, Phys. Rev.D 98 (2018) 083535 [arXiv:1708.00493] [INSPIRE].
[29] J. Martin and V. Vennin, Observational constraints on quantum decoherence during inflation, JCAP05 (2018) 063 [arXiv:1801.09949] [INSPIRE]. · Zbl 1536.83191 · doi:10.1088/1475-7516/2018/05/063
[30] Planck collaboration, Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys.594 (2016) A17 [arXiv:1502.01592] [INSPIRE].
[31] C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP03 (2008) 014 [arXiv:0709.0293] [INSPIRE]. · doi:10.1088/1126-6708/2008/03/014
[32] T. Prokopec and G. Rigopoulos, Path Integral for Inflationary Perturbations, Phys. Rev.D 82 (2010) 023529 [arXiv:1004.0882] [INSPIRE].
[33] J.-O. Gong, M.-S. Seo and G. Shiu, Path integral for multi-field inflation, JHEP07 (2016) 099 [arXiv:1603.03689] [INSPIRE]. · Zbl 1390.83451 · doi:10.1007/JHEP07(2016)099
[34] F. Bloch and A. Nordsieck, Note on the Radiation Field of the electron, Phys. Rev.52 (1937) 54 [INSPIRE]. · Zbl 0017.23504 · doi:10.1103/PhysRev.52.54
[35] J.-O. Gong and M.-S. Seo, Consistency relations in multi-field inflation, JCAP02 (2018) 008 [arXiv:1707.08282] [INSPIRE]. · Zbl 1527.83139 · doi:10.1088/1475-7516/2018/02/008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.