×

Non Gaussianities from quantum decoherence during inflation. (English) Zbl 1527.83154

Summary: Inflationary cosmological perturbations of quantum-mechanical origin generically interact with all degrees of freedom present in the early Universe. Therefore, they must be viewed as an open quantum system in interaction with an environment. This implies that, under some conditions, decoherence can take place. The presence of the environment can also induce modifications in the power spectrum, thus offering an observational probe of cosmic decoherence. Here, we demonstrate that this also leads to non Gaussianities that we calculate using the Lindblad equation formalism. We show that, while the bispectrum remains zero, the four-point correlation functions become non-vanishing. Using the Cosmic Microwave Background measurements of the trispectrum by the Planck satellite, we derive constraints on the strength of the interaction between the perturbations and the environment and show that, in some regimes, they are more stringent than those arising from the power spectrum.

MSC:

83F05 Relativistic cosmology

References:

[1] W.H. Zurek, 1981 Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse?, Phys. Rev. D 24 1516 · doi:10.1103/PhysRevD.24.1516
[2] E. Joos and H.D. Zeh, 1985 The Emergence of classical properties through interaction with the environment, Z. Phys. B 59 223 · doi:10.1007/BF01725541
[3] M. Schlosshauer, 2004 Decoherence, the measurement problem and interpretations of quantum mechanics, Rev. Mod. Phys.76 1267 [quant-ph/0312059] · doi:10.1103/RevModPhys.76.1267
[4] M. Brune, E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich et al., 1996 Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement, https://doi.org/10.1103/PhysRevLett.77.4887 Phys. Rev. Lett.77 4887 · doi:10.1103/PhysRevLett.77.4887
[5] C. Kiefer, D. Polarski and A.A. Starobinsky, 1998 Quantum to classical transition for fluctuations in the early universe, Int. J. Mod. Phys. D 7 455 [gr-qc/9802003] · Zbl 0939.83024 · doi:10.1142/S0218271898000292
[6] M. Bellini, 2001 Decoherence of gauge invariant metric fluctuations during inflation, Phys. Rev. D 64 043507 [gr-qc/0105011] · doi:10.1103/PhysRevD.64.043507
[7] F.C. Lombardo and D. Lopez Nacir, 2005 Decoherence during inflation: The Generation of classical inhomogeneities, Phys. Rev. D 72 063506 [gr-qc/0506051] · doi:10.1103/PhysRevD.72.063506
[8] C. Kiefer, I. Lohmar, D. Polarski and A.A. Starobinsky, 2007 Pointer states for primordial fluctuations in inflationary cosmology, Class. Quant. Grav.24 1699 [astro-ph/0610700] · Zbl 1112.83060 · doi:10.1088/0264-9381/24/7/002
[9] P. Martineau, 2007 On the decoherence of primordial fluctuations during inflation, Class. Quant. Grav.24 5817 [astro-ph/0601134] · Zbl 1130.83332 · doi:10.1088/0264-9381/24/23/006
[10] C.P. Burgess, R. Holman and D. Hoover, 2008 Decoherence of inflationary primordial fluctuations, Phys. Rev. D 77 063534 [astro-ph/0601646] · doi:10.1103/PhysRevD.77.063534
[11] T. Prokopec and G.I. Rigopoulos, 2007 Decoherence from Isocurvature perturbations in Inflation J. Cosmol. Astropart. Phys.2007 11 029 [astro-ph/0612067]
[12] J.W. Sharman and G.D. Moore, 2007 Decoherence due to the Horizon after Inflation J. Cosmol. Astropart. Phys.2007 11 020 [0708.3353]
[13] J. Weenink and T. Prokopec, On decoherence of cosmological perturbations and stochastic inflation, [1108.3994]
[14] E. Nelson, 2016 Quantum Decoherence During Inflation from Gravitational Nonlinearities J. Cosmol. Astropart. Phys.2016 03 022 [1601.03734]
[15] A. Rostami and J.T. Firouzjaee, Quantum decoherence from entanglement during inflation, [1705.07703]
[16] D. Boyanovsky, Imprint of entanglement entropy in the power spectrum of inflationary fluctuations, [1804.07967]
[17] C.P. Burgess, R. Holman, G. Tasinato and M. Williams, 2015 EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical J. High Energy Phys. JHEP03(2015)090 [1408.5002] · Zbl 1388.83894 · doi:10.1007/JHEP03(2015)090
[18] A.H. Guth, 1981 The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev.D 23347 · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[19] A. Albrecht and P.J. Steinhardt, 1982 Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett.48 1220 · doi:10.1103/PhysRevLett.48.1220
[20] A.D. Linde, 1983 Chaotic Inflation, Phys. Lett. B 129 177 · doi:10.1016/0370-2693(83)90837-7
[21] V.F. Mukhanov and G.V. Chibisov, 1981 Quantum Fluctuations and a Nonsingular Universe JETP Lett.33 532
[22] A.H. Guth and S.Y. Pi, 1982 Fluctuations in the New Inflationary Universe, Phys. Rev. Lett.49 1110 · doi:10.1103/PhysRevLett.49.1110
[23] G. Lindblad, 1976 On the Generators of Quantum Dynamical Semigroups, Commun. Math. Phys.48 119 · Zbl 0343.47031 · doi:10.1007/BF01608499
[24] J. Martin and V. Vennin, 2018 Observational constraints on quantum decoherence during inflation J. Cosmol. Astropart. Phys.2018 05 063 [1801.09949] · Zbl 1536.83191
[25] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys.594 A17 [1502.01592] · doi:10.1051/0004-6361/201525836
[26] J. Martin, 2016 The Observational Status of Cosmic Inflation after Planck, Astrophys. Space Sci. Proc.45 41 [1502.05733] · doi:10.1007/978-3-319-44769-8_2
[27] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.594 A20 [1502.02114] · doi:10.1051/0004-6361/201525898
[28] J. Martin and V. Vennin, 2016 Quantum Discord of Cosmic Inflation: Can we Show that CMB Anisotropies are of Quantum-Mechanical Origin?, Phys. Rev. D 93 023505 [1510.04038] · doi:10.1103/PhysRevD.93.023505
[29] J. Martin and V. Vennin, 2017 Obstructions to Bell CMB Experiments, Phys. Rev. D 96 063501 [1706.05001] · doi:10.1103/PhysRevD.96.063501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.