×

Power-counting during single-field slow-roll inflation. (English) Zbl 1527.83099

Summary: We elucidate the counting of the relevant small parameters in inflationary perturbation theory. Doing this allows for an explicit delineation of the domain of validity of the semi-classical approximation to gravity used in the calculation of inflationary correlation functions. We derive an expression for the dependence of correlation functions of inflationary perturbations on the slow-roll parameter \(\epsilon = -\dot{H}/H^2\), as well as on \(H/M_p\), where \(H\) is the Hubble parameter during inflation. Our analysis is valid for single-field models in which the inflaton can traverse a Planck-sized range in field values and where all slow-roll parameters have approximately the same magnitude. As an application, we use our expression to seek the boundaries of the domain of validity of inflationary perturbation theory for regimes where this is potentially problematic: models with small speed of sound and models allowing eternal inflation.

MSC:

83F05 Relativistic cosmology

References:

[1] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XX. Constraints on inflation, https://doi.org/10.1051/0004-6361/201525898 Astron. Astrophys.594 A20 [1502.02114] · doi:10.1051/0004-6361/201525898
[2] WMAP collaboration, G. Hinshaw et al., 2013 Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, https://doi.org/10.1088/0067-0049/208/2/19 Astrophys. J. Suppl.208 19 [1212.5226]
[3] S.A. Rodríguez-Torres et al., 2017 Clustering of quasars in the First Year of the SDSS-IV eBOSS survey: Interpretation and halo occupation distribution, https://doi.org/10.1093/mnras/stx454 Mon. Not. Roy. Astron. Soc.468 728 [1612.06918] · doi:10.1093/mnras/stx454
[4] DES collaboration, T.M.C. Abbott et al., Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing, [1708.01530]
[5] V.F. Mukhanov and G.V. Chibisov, 1981 Quantum Fluctuations and a Nonsingular Universe JETP Lett.33 532
[6] V.F. Mukhanov and G.V. Chibisov, 1981 Pisma Zh. Eksp. Teor. Fiz.33 549
[7] A.H. Guth and S.Y. Pi, 1982 Fluctuations in the New Inflationary Universe, https://doi.org/10.1103/PhysRevLett.49.1110 Phys. Rev. Lett.49 1110
[8] A.A. Starobinsky, 1982 Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, https://doi.org/10.1016/0370-2693(82)90541-X Phys. Lett. B 117 175 · doi:10.1016/0370-2693(82)90541-X
[9] S.W. Hawking, 1982 The Development of Irregularities in a Single Bubble Inflationary Universe, https://doi.org/10.1016/0370-2693(82)90373-2 Phys. Lett. B 115 295 · doi:10.1016/0370-2693(82)90373-2
[10] V.N. Lukash, 1980 Sound wave production in the early Universe Pisma Zh. Eksp. Teor. Fiz.31 631
[11] V.N. Lukash, 1980 Production of phonons in an isotropic universe Sov. Phys. JETP52 807
[12] V.N. Lukash, 1980 Zh. Eksp. Teor. Fiz.79 1601
[13] W. Press, 1980 Spontaneous Production of the Zel’dovich Spectrum of Cosmological Fluctuations, https://doi.org/10.1088/0031-8949/21/5/021 Phys. Scr.21 702
[14] K. Sato, 1981 First Order Phase Transition of a Vacuum and Expansion of the Universe Mon. Not. Roy. Astron. Soc.195 467 · doi:10.1093/mnras/195.3.467
[15] A.H. Guth, 1981 The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, https://doi.org/10.1103/PhysRevD.23.347 Phys. Rev. D 23 347 · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[16] A.D. Linde, 1982 A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, https://doi.org/10.1016/0370-2693(82)91219-9 Phys. Lett. B 108 389 · doi:10.1016/0370-2693(82)91219-9
[17] A. Albrecht and P.J. Steinhardt, 1982 Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, https://doi.org/10.1103/PhysRevLett.48.1220 Phys. Rev. Lett.48 1220
[18] A.D. Linde, 1983 Chaotic Inflation, https://doi.org/10.1016/0370-2693(83)90837-7 Phys. Lett. B 129 177
[19] R.P. Feynman, 1963 Quantum theory of gravitation Acta Phys. Polon.24 697
[20] B.S. DeWitt, 1967 Quantum Theory of Gravity. 1. The Canonical Theory, https://doi.org/10.1103/PhysRev.160.1113 Phys. Rev.1601113 · Zbl 0158.46504
[21] B.S. DeWitt, 1967 Quantum Theory of Gravity. 2. The Manifestly Covariant Theory, https://doi.org/10.1103/PhysRev.162.1195 Phys. Rev.162 1195 · Zbl 0161.46501
[22] S. Mandelstam, 1968 Feynman rules for the gravitational field from the coordinate independent field theoretic formalism, https://doi.org/10.1103/PhysRev.175.1604 Phys. Rev.1751604
[23] S. Weinberg, 1979 Phenomenological Lagrangians Physica A 96 327 · doi:10.1016/0378-4371(79)90223-1
[24] H. Leutwyler, Principles of chiral perturbation theory, [hep-ph/9406283]
[25] A.V. Manohar, 1997 Effective field theories, https://doi.org/10.1007/BFb0104294 Lect. Notes Phys.479 311 [hep-ph/9606222] · doi:10.1007/BFb0104294
[26] C.P. Burgess, 2007 Introduction to Effective Field Theory, https://doi.org/10.1146/annurev.nucl.56.080805.140508 Ann. Rev. Nucl. Part. Sci.57 329 [hep-th/0701053]
[27] J.F. Donoghue, Introduction to the effective field theory description of gravity, [gr-qc/9512024]
[28] J.F. Donoghue and T. Torma, 1996 On the power counting of loop diagrams in general relativity, https://doi.org/10.1103/PhysRevD.54.4963 Phys. Rev. D 54 4963 [hep-th/9602121]
[29] C.P. Burgess, 2004 Quantum gravity in everyday life: General relativity as an effective field theory, https://doi.org/10.12942/lrr-2004-5 Living Rev. Rel.7 5 [gr-qc/0311082] · Zbl 1070.83009
[30] C.P. Burgess, The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics, [1309.4133]
[31] S. Weinberg, 2008 Effective Field Theory for Inflation, https://doi.org/10.1103/PhysRevD.77.123541 Phys. Rev. D 77 123541 [0804.4291] · doi:10.1103/PhysRevD.77.123541
[32] C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, 2008 The Effective Field Theory of Inflation J. High Energy Phys. JHEP03(2008)014 [0709.0293]
[33] R. Bean, D.J.H. Chung and G. Geshnizjani, 2008 Reconstructing a general inflationary action, https://doi.org/10.1103/PhysRevD.78.023517 Phys. Rev. D 78 023517 [0801.0742] · doi:10.1103/PhysRevD.78.023517
[34] M. Alishahiha, E. Silverstein and D. Tong, 2004 DBI in the sky, https://doi.org/10.1103/PhysRevD.70.123505 Phys. Rev. D 70 123505 [hep-th/0404084]
[35] D.S. Salopek, J.R. Bond and J.M. Bardeen, 1989 Designing Density Fluctuation Spectra in Inflation, https://doi.org/10.1103/PhysRevD.40.1753 Phys. Rev. D 40 1753
[36] R. Fakir and W.G. Unruh, 1990 Improvement on cosmological chaotic inflation through nonminimal coupling, https://doi.org/10.1103/PhysRevD.41.1783 Phys. Rev. D 41 1783
[37] F.L. Bezrukov and M. Shaposhnikov, 2008 The Standard Model Higgs boson as the inflaton, https://doi.org/10.1016/j.physletb.2007.11.072 Phys. Lett. B 659 703 [0710.3755]
[38] A.A. Starobinsky, 1980 A New Type of Isotropic Cosmological Models Without Singularity, https://doi.org/10.1016/0370-2693(80)90670-X Phys. Lett. B 91 99 · Zbl 1371.83222 · doi:10.1016/0370-2693(80)90670-X
[39] C.P. Burgess, H.M. Lee and M. Trott, 2009 Power-counting and the Validity of the Classical Approximation During Inflation J. High Energy Phys. JHEP09(2009)103 [0902.4465]
[40] C.P. Burgess, H.M. Lee and M. Trott, 2010 Comment on Higgs Inflation and Naturalness J. High Energy Phys. JHEP07(2010)007 [1002.2730] · Zbl 1290.81198 · doi:10.1007/JHEP07(2010)007
[41] J.L.F. Barbon and J.R. Espinosa, 2009 On the Naturalness of Higgs Inflation, https://doi.org/10.1103/PhysRevD.79.081302 Phys. Rev. D 79 081302 [0903.0355]
[42] C.P. Burgess, S.P. Patil and M. Trott, 2014 On the Predictiveness of Single-Field Inflationary Models J. High Energy Phys. JHEP06(2014)010 [1402.1476] · doi:10.1007/JHEP06(2014)010
[43] C.P. Burgess, M. Cicoli, S. de Alwis and F. Quevedo, 2016 Robust Inflation from Fibrous Strings J. Cosmol. Astropart. Phys.2016 05 032 [1603.06789]
[44] G. Shiu and I. Wasserman, 2002 On the signature of short distance scale in the cosmic microwave background, https://doi.org/10.1016/S0370-2693(02)01835-X Phys. Lett. B 536 1 [hep-th/0203113] · doi:10.1016/S0370-2693(02)01835-X
[45] N. Kaloper, M. Kleban, A.E. Lawrence and S. Shenker, 2002 Signatures of short distance physics in the cosmic microwave background, https://doi.org/10.1103/PhysRevD.66.123510 Phys. Rev. D 66 123510 [hep-th/0201158] · doi:10.1103/PhysRevD.66.123510
[46] N. Kaloper, M. Kleban, A. Lawrence, S. Shenker and L. Susskind, 2002 Initial conditions for inflation J. High Energy Phys. JHEP11(2002)037 [hep-th/0209231]
[47] C.P. Burgess, J.M. Cline and R. Holman, 2003 Effective field theories and inflation J. Cosmol. Astropart. Phys.2003 10 004 [hep-th/0306079]
[48] C.P. Burgess, J.M. Cline, F. Lemieux and R. Holman, 2003 Are inflationary predictions sensitive to very high-energy physics? J. High Energy Phys. JHEP02(2003)048 [hep-th/0210233]
[49] J.M. Maldacena, 2003 Non-Gaussian features of primordial fluctuations in single field inflationary models J. High Energy Phys. JHEP05(2003)013 [astro-ph/0210603]
[50] D. Seery, J.E. Lidsey and M.S. Sloth, 2007 The inflationary trispectrum J. Cosmol. Astropart. Phys.2007 01 027 [astro-ph/0610210]
[51] F. Arroja and K. Koyama, 2008 Non-Gaussianity from the trispectrum in general single field inflation, https://doi.org/10.1103/PhysRevD.77.083517 Phys. Rev. D 77 083517 [0802.1167] · doi:10.1103/PhysRevD.77.083517
[52] D. Seery, M.S. Sloth and F. Vernizzi, 2009 Inflationary trispectrum from graviton exchange J. Cosmol. Astropart. Phys.2009 03 018 [0811.3934]
[53] R. Flauger, M. Mirbabayi, L. Senatore and E. Silverstein, 2017 Productive Interactions: heavy particles and non-Gaussianity J. Cosmol. Astropart. Phys.2017 10 058 [1606.00513] · Zbl 1515.83348
[54] J. Hughes, J. Liu and J. Polchinski, 1989 Virasoro-shapiro From Wilson, https://doi.org/10.1016/0550-3213(89)90384-2 Nucl. Phys. B 316 15 · doi:10.1016/0550-3213(89)90384-2
[55] J. Hughes and J. Polchinski, 1986 Partially Broken Global Supersymmetry and the Superstring, https://doi.org/10.1016/0550-3213(86)90111-2 Nucl. Phys. B 278 147 · doi:10.1016/0550-3213(86)90111-2
[56] C. de Rham and A.J. Tolley, 2010 DBI and the Galileon reunited J. Cosmol. Astropart. Phys.2010 05 015 [1003.5917]
[57] L. Senatore, K.M. Smith and M. Zaldarriaga, 2010 Non-Gaussianities in Single Field Inflation and their Optimal Limits from the WMAP 5-year Data J. Cosmol. Astropart. Phys.2010 01 028 [0905.3746]
[58] L. Senatore and M. Zaldarriaga, 2011 A Naturally Large Four-Point Function in Single Field Inflation J. Cosmol. Astropart. Phys.2011 01 003 [1004.1201]
[59] D. Baumann and D. Green, 2011 Equilateral Non-Gaussianity and New Physics on the Horizon J. Cosmol. Astropart. Phys.2011 09 014 [1102.5343]
[60] L. Leblond and S. Shandera, 2008 Simple Bounds from the Perturbative Regime of Inflation J. Cosmol. Astropart. Phys.2008 08 007 [0802.2290]
[61] S. Shandera, 2009 The structure of correlation functions in single field inflation, https://doi.org/10.1103/PhysRevD.79.123518 Phys. Rev. D 79 123518 [0812.0818] · doi:10.1103/PhysRevD.79.123518
[62] C. de Rham and S. Melville, 2017 Unitary null energy condition violation in P(X) cosmologies, https://doi.org/10.1103/PhysRevD.95.123523 Phys. Rev. D 95 123523 [1703.00025] · doi:10.1103/PhysRevD.95.123523
[63] M. Becker, L. Leblond and S.E. Shandera, 2007 Inflation from wrapped branes, https://doi.org/10.1103/PhysRevD.76.123516 Phys. Rev. D 76 123516 [0709.1170] · doi:10.1103/PhysRevD.76.123516
[64] X. Chen, 2008 Fine-Tuning in DBI Inflationary Mechanism J. Cosmol. Astropart. Phys.2008 12 009 [0807.3191]
[65] P. Creminelli, S. Dubovsky, A. Nicolis, L. Senatore and M. Zaldarriaga, 2008 The Phase Transition to Slow-roll Eternal Inflation J. High Energy Phys. JHEP09(2008)036 [0802.1067]
[66] I.S. Kohli and M.C. Haslam, 2016 Stochastic Eternal Inflation in a Bianchi Type I Universe, https://doi.org/10.1103/PhysRevD.93.023514 Phys. Rev. D 93 023514 [1508.02670] · doi:10.1103/PhysRevD.93.023514
[67] A.A. Starobinsky, 1986 Stochastic de Sitter (inflationary) stage in the early universe, https://doi.org/\(10.1007/3-540-16452-9_6\)Lect. Notes Phys.246 107 · doi:10.1007/3-540-16452-9_6
[68] A.A. Starobinsky and J. Yokoyama, 1994 Equilibrium state of a selfinteracting scalar field in the de Sitter background, https://doi.org/10.1103/PhysRevD.50.6357 Phys. Rev. D 50 6357 [astro-ph/9407016]
[69] C.P. Burgess, R. Holman and G. Tasinato, 2016 Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation J. High Energy Phys. JHEP01(2016)153 [1512.00169] · doi:10.1007/JHEP01(2016)153
[70] C.P. Burgess, R. Holman, G. Tasinato and M. Williams, 2015 EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical J. High Energy Phys. JHEP03(2015)090 [1408.5002] · Zbl 1388.83894 · doi:10.1007/JHEP03(2015)090
[71] V.K. Onemli, 2015 Vacuum Fluctuations of a Scalar Field during Inflation: Quantum versus Stochastic Analysis, https://doi.org/10.1103/PhysRevD.91.103537 Phys. Rev. D 91 103537 [1501.05852] · doi:10.1103/PhysRevD.91.103537
[72] V. Vennin and A.A. Starobinsky, 2015 Correlation Functions in Stochastic Inflation, https://doi.org/10.1140/epjc/s10052-015-3643-y Eur. Phys. J. C 75 413 [1506.04732]
[73] D. Boyanovsky, 2016 Effective field theory during inflation. II. Stochastic dynamics and power spectrum suppression, https://doi.org/10.1103/PhysRevD.93.043501 Phys. Rev. D 93 043501 [1511.06649] · doi:10.1103/PhysRevD.93.043501
[74] H. Assadullahi, H. Firouzjahi, M. Noorbala, V. Vennin and D. Wands, 2016 Multiple Fields in Stochastic Inflation J. Cosmol. Astropart. Phys.2016 06 043 [1604.04502]
[75] J. Grain and V. Vennin, 2017 Stochastic inflation in phase space: Is slow roll a stochastic attractor? J. Cosmol. Astropart. Phys.2017 05 045 [1703.00447] · Zbl 1515.83362
[76] M. Motaharfar, E. Massaeli and H.R. Sepangi, 2017 Power spectra in warm G-inflation and its consistency: stochastic approach, https://doi.org/10.1103/PhysRevD.96.103541 Phys. Rev. D 96 103541 [1705.04049] · doi:10.1103/PhysRevD.96.103541
[77] H. Collins, R. Holman and T. Vardanyan, 2017 The quantum Fokker-Planck equation of stochastic inflation J. High Energy Phys. JHEP11(2017)065 [1706.07805] · Zbl 1383.83229 · doi:10.1007/JHEP11(2017)065
[78] C. Pattison, V. Vennin, H. Assadullahi and D. Wands, 2017 Quantum diffusion during inflation and primordial black holes J. Cosmol. Astropart. Phys.2017 10 046 [1707.00537] · Zbl 1515.83170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.