×

Energies for elastic plates and shells from quadratic-stretch elasticity. (English) Zbl 1519.74045

Summary: We derive stretching and bending energies for isotropic elastic plates and shells. Through the dimensional reduction of a bulk elastic energy quadratic in Biot strains, we obtain two-dimensional bending energies quadratic in bending measures featuring a bilinear coupling of stretches and geometric curvatures. For plates, the bending measure is invariant under spatial dilations and naturally extends primitive bending strains for straight rods. For shells or naturally-curved rods, the measure is not dilation invariant, and contrasts with previous ad hoc postulated forms. The corresponding field equations and boundary conditions feature moments linear in the bending measures, and a decoupling of stretching and bending such that application of a pure moment results in isometric deformation of a unique neutral surface, primitive behaviors in agreement with classical linear response but not displayed by commonly used analytical models. We briefly comment on relations between our energies, those derived from a neo-Hookean bulk energy, and a commonly used discrete model for flat membranes. Although the derivation requires consideration of stretch and rotation fields, the resulting energy and field equations can be expressed entirely in terms of metric and curvature components of deformed and reference surfaces.

MSC:

74K20 Plates
74K25 Shells
74B20 Nonlinear elasticity

References:

[1] Vitral, E.; Hanna, J. A., Dilation-invariant bending of elastic plates, and broken symmetry in shells, J. Elast. (2022) · Zbl 1524.74334 · doi:10.1007/s10659-022-09894-4
[2] John, F., Plane strain problems for a perfectly elastic material of harmonic type, Commun. Pure Appl. Math., 13, 2, 239-296 (1960) · Zbl 0094.37001 · doi:10.1002/cpa.3160130206
[3] Lur’e, A. I., Theory of elasticity for a semilinear material, J. Appl. Math. Mech., 32, 6, 1068-1085 (1968) · doi:10.1016/0021-8928(68)90034-8
[4] Vitral, E.; Hanna, J. A., Quadratic-stretch elasticity, Math. Mech. Solids (2021) · Zbl 07590434 · doi:10.1177/10812865211022417
[5] Irschik, H.; Gerstmayr, J., A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli-Euler beams, Acta Mech., 206, 1-21 (2009) · Zbl 1167.74028 · doi:10.1007/s00707-008-0085-8
[6] Oshri, O.; Diamant, H., Strain tensor selection and the elastic theory of incompatible thin sheets, Phys. Rev. E, 95 (2017) · doi:10.1103/PhysRevE.95.053003
[7] Wood, H. G.; Hanna, J. A., Contrasting bending energies from bulk elastic theories, Soft Matter, 15, 2411-2417 (2019) · doi:10.1039/C8SM02297F
[8] Atluri, S. N., Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations, for computational analyses of finitely deformed solids, with application to plates and shells—I: Theory, Comput. Struct., 18, 1, 93-116 (1984) · Zbl 0524.73043 · doi:10.1016/0045-7949(84)90085-3
[9] Stumpf, H.; Makowski, J., On large strain deformations of shells, Acta Mech., 65, 153-168 (1986) · Zbl 0602.73035 · doi:10.1007/BF01176879
[10] Ozenda, O.; Virga, E. G., On the Kirchhoff-Love hypothesis (revised and vindicated), J. Elast., 143, 359-384 (2021) · Zbl 1465.74104 · doi:10.1007/s10659-021-09819-7
[11] Steigmann, D. J., Thin-plate theory for large elastic deformations, Int. J. Non-Linear Mech., 42, 2, 233-240 (2007) · Zbl 1200.74098 · doi:10.1016/j.ijnonlinmec.2006.10.004
[12] Steigmann, D. J., Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity, Int. J. Eng. Sci., 46, 7, 654-676 (2008) · Zbl 1213.74209 · doi:10.1016/j.ijengsci.2008.01.015
[13] Steigmann, D. J., Extension of Koiter’s linear shell theory to materials exhibiting arbitrary symmetry, Int. J. Eng. Sci., 51, 216-232 (2012) · Zbl 1423.74582 · doi:10.1016/j.ijengsci.2011.09.012
[14] Steigmann, D. J., Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity, J. Elast., 111, 1, 91-107 (2013) · Zbl 1315.74016 · doi:10.1007/s10659-012-9393-2
[15] Biricikoglu, V.; Kalnins, A., Large elastic deformations of shells with the inclusion of transverse normal strain, Int. J. Solids Struct., 7, 5, 431-444 (1971) · Zbl 0224.73054 · doi:10.1016/0020-7683(71)90097-7
[16] Chernykh, K. F., Nonlinear theory of isotropically elastic thin shells, Mech. Solids, 15, 2, 118-127 (1980)
[17] Pietraszkiewicz, W.; Szwabowicz, M. L.; Vallée, C., Determination of the midsurface of a deformed shell from prescribed surface strains and bendings via the polar decomposition, Int. J. Non-Linear Mech., 43, 7, 579-587 (2008) · Zbl 1203.74098 · doi:10.1016/j.ijnonlinmec.2008.02.003
[18] Wisniewski, K., A shell theory with independent rotations for relaxed Biot stress and right stretch strain, Comput. Mech., 21, 2, 101-122 (1998) · Zbl 0909.73051 · doi:10.1007/s004660050287
[19] Sansour, C.; Bufler, H., An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation, Int. J. Numer. Methods Eng., 34, 1, 73-115 (1992) · Zbl 0760.73043 · doi:10.1002/nme.1620340107
[20] Wiśniewski, K., Finite Rotation Shells: Basic Equations and Finite Elements for Reissner Kinematics (2010), Berlin: Springer, Berlin · Zbl 1201.74004 · doi:10.1007/978-90-481-8761-4
[21] Flügge, W., Tensor Analysis and Continuum Mechanics (1972), New York: Springer, New York · Zbl 0224.73001 · doi:10.1007/978-3-642-88382-8
[22] Antman, S., General solutions for plane extensible elasticae having nonlinear stress-strain laws, Q. Appl. Math., 26, 1, 35-47 (1968) · Zbl 0157.56505 · doi:10.1090/qam/99868
[23] Reissner, E., On one-dimensional finite-strain beam theory: the plane problem, Z. Angew. Math. Phys., 23, 795-804 (1972) · Zbl 0248.73022 · doi:10.1007/BF01602645
[24] Whitman, A. B.; DeSilva, C. N., An exact solution in a nonlinear theory of rods, J. Elast., 4, 4, 265-280 (1974) · Zbl 0295.73052 · doi:10.1007/BF00048610
[25] Knoche, S.; Kierfeld, J., Buckling of spherical capsules, Phys. Rev. E, 84 (2011) · doi:10.1103/PhysRevE.84.046608
[26] Armon, S.; Efrati, E.; Kupferman, R.; Sharon, E., Geometry and mechanics in the opening of chiral seed pods, Science, 333, 1726-1730 (2011) · doi:10.1126/science.1203874
[27] Pezzulla, M.; Stoop, N.; Jiang, X.; Holmes, D. P., Curvature-driven morphing of non-Euclidean shells, Proc. R. Soc. A, 473 (2017) · Zbl 1404.74098 · doi:10.1098/rspa.2017.0087
[28] Steigmann, D. J.; Schröder, J.; Neff, P., Applications of polyconvexity and strong ellipticity to nonlinear elasticity and elastic plate theory, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, 265-299 (2010), Berlin: Springer, Berlin · doi:10.1007/978-3-7091-0174-2_8
[29] Efrati, E.; Sharon, E.; Kupferman, R., Elastic theory of unconstrained non-Euclidean plates, J. Mech. Phys. Solids, 57, 4, 762-775 (2009) · Zbl 1306.74031 · doi:10.1016/j.jmps.2008.12.004
[30] Seung, H. S.; Nelson, D. R., Defects in flexible membranes with crystalline order, Phys. Rev. A, 38, 2, 1005 (1988) · doi:10.1103/PhysRevA.38.1005
[31] Schmidt, B.; Fraternali, F., Universal formulae for the limiting elastic energy of membrane networks, J. Mech. Phys. Solids, 60, 1, 172-180 (2012) · Zbl 1244.74080 · doi:10.1016/j.jmps.2011.09.003
[32] Virga, E.G.: A pure measure of bending for plates. Unpublished note (2021)
[33] Hanna, J. A., Some observations on variational elasticity and its application to plates and membranes, Z. Angew. Math. Phys., 70, 76 (2019) · Zbl 1439.74167 · doi:10.1007/s00033-019-1122-2
[34] Ugural, A. C.; Fenster, S. K., Advanced Strength and Applied Elasticity (2003), Upper Saddle River: Prentice Hall, Upper Saddle River
[35] Hoger, A.; Carlson, D. E., Determination of the stretch and rotation in the polar decomposition of the deformation gradient, Q. Appl. Math., 42, 1, 113-117 (1984) · Zbl 0551.73004 · doi:10.1090/qam/736511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.