×

Curvature-driven morphing of non-Euclidean shells. (English) Zbl 1404.74098

Summary: We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure’s natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.

MSC:

74K25 Shells
53Z05 Applications of differential geometry to physics

References:

[1] Timoshenko S. (1925) Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11, 233-255. (doi:10.1364/JOSA.11.000233) · doi:10.1364/JOSA.11.000233
[2] Ozakin A, Yavari A. (2010) A geometric theory of thermal stresses. J. Math. Phys. 51, 032902. (doi:10.1063/1.3313537) · Zbl 1309.74021 · doi:10.1063/1.3313537
[3] Hong W, Zhao X, Zhou J, Suo Z. (2008) A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids 56, 1779-1793. (doi:10.1016/j.jmps.2007.11.010) · Zbl 1162.74313 · doi:10.1016/j.jmps.2007.11.010
[4] Lucantonio A, Nardinocchi P, Teresi L. (2013) Transient analysis of swelling-induced large deformations in polymer gels. J. Mech. Phys. Solids 61, 205-218. (doi:10.1016/j.jmps.2012.07.010) · doi:10.1016/j.jmps.2012.07.010
[5] Klein Y, Efrati E, Sharon E. (2007) Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315, 1116-1120. (doi:10.1126/science.1135994) · Zbl 1226.74013 · doi:10.1126/science.1135994
[6] Holmes DP, Roché M, Sinha T, Stone HA. (2011) Bending and twisting of soft materials by non-homogeneous swelling. Soft Matter 7, 5188-5193. (doi:10.1039/c0sm01492c) · doi:10.1039/c0sm01492c
[7] Kim J, Hanna JA, Byun M, Santangelo CD, Hayward RC. (2012) Designing responsive buckled surfaces by halftone gel lithography. Science 335, 1201-1205. (doi:10.1126/science.1215309) · Zbl 1355.74027 · doi:10.1126/science.1215309
[8] Höhn S, Honerkamp-Smith AR, Haas PA, Trong PK, Goldstein RE. (2015) Dynamics of a Volvox embryo turning itself inside out. Phys. Rev. Lett. 114, 178101. (doi:10.1103/PhysRevLett.114.178101) · doi:10.1103/PhysRevLett.114.178101
[9] Haas PA, Goldstein RE. (2015) Elasticity and glocality: initiation of embryonic inversion in Volvox. J. R. Soc. Interface 12, 20150671. (doi:10.1098/rsif.2015.0671) · doi:10.1098/rsif.2015.0671
[10] Katifori E, Alben S, Cerda E, Nelson DR, Dumais J. (2010) Foldable structures and the natural design of pollen grains. Proc. Natl Acad. Sci. USA 107, 7635-7639. (doi:10.1073/pnas.0911223107) · doi:10.1073/pnas.0911223107
[11] Boudaoud A. (2010) An introduction to the mechanics of morphogenesis for plant biologists. Trends. Plant. Sci. 15, 353-360. (doi:10.1016/j.tplants.2010.04.002) · doi:10.1016/j.tplants.2010.04.002
[12] Klein Y, Venkataramani S, Sharon E. (2011) Experimental study of shape transitions and energy scaling in thin non-Euclidean plates. Phys. Rev. Lett. 106, 118303. (doi:10.1103/PhysRevLett.106.118303) · doi:10.1103/PhysRevLett.106.118303
[13] Pezzulla M, Shillig SA, Nardinocchi P, Holmes DP. (2015) Morphing of geometric composites via residual swelling. Soft Matter 11, 5812-5820. (doi:10.1039/C5SM00863H) · doi:10.1039/C5SM00863H
[14] Pezzulla M, Smith GP, Nardinocchi P, Holmes DP. (2016) Geometry and mechanics of thin growing bilayers. Soft Matter 12, 4435-4442. (doi:10.1039/C6SM00246C) · doi:10.1039/C6SM00246C
[15] Kondaurov VI, Nikitin LV. (1987) Finite strains of viscoelastic muscle tissue. J. Appl. Math. Mech. 51, 346-353. (doi:10.1016/0021-8928(87)90111-0) · Zbl 0661.73025 · doi:10.1016/0021-8928(87)90111-0
[16] Takamizawa K, Hayashi K. (1987) Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20, 7-17. (doi:10.1016/0021-9290(87)90262-4) · doi:10.1016/0021-9290(87)90262-4
[17] Rayleigh JWSB. (1894) The theory of sound, vol. 1. New York, NY: Macmillan. · JFM 25.1604.01
[18] Love AEH. (1888) The small free vibrations and deformation of a thin elastic shell. Phil. Trans. R. Soc. Lond. A 179, 491-546. (doi:10.1098/rsta.1888.0016) · JFM 20.1075.01 · doi:10.1098/rsta.1888.0016
[19] von Kármán T. (1910) Festigkeitsprobleme im Maschinenbau. Encyklopädie der Mathematischen Wissenschaften. 4, 311-385. · JFM 41.0907.02
[20] Koiter WT, Simmonds JG. (1973)Foundations of shell theory. In Theoretical and applied mechanics (eds E Becker, GK Mikhailov), pp. 150-176. Berlin, Germany: Springer. · Zbl 0286.73068
[21] Efrati E, Sharon E, Kupferman R. (2009) Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids. 57, 762-775. (doi:10.1016/j.jmps.2008.12.004) · Zbl 1306.74031 · doi:10.1016/j.jmps.2008.12.004
[22] Armon S, Efrati E, Kupferman R, Sharon E. (2011) Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726-1730. (doi:10.1126/science.1203874) · doi:10.1126/science.1203874
[23] Sadik S, Angoshtari A, Goriely A, Yavari A. (2016) A geometric theory of nonlinear morphoelastic shells. J. Nonlinear Sci. 26, 929-978. (doi:10.1007/s00332-016-9294-9) · Zbl 1388.74071 · doi:10.1007/s00332-016-9294-9
[24] Py C, Reverdy P, Doppler L, Bico J, Roman B, Baroud CN. (2007) Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103. (doi:10.1103/PhysRevLett.98.156103) · doi:10.1103/PhysRevLett.98.156103
[25] Amar MB, Goriely A. (2005) Growth and instability in elastic tissues. J. Mech. Phys. Solids 53, 2284-2319. (doi:10.1016/j.jmps.2005.04.008) · Zbl 1120.74336 · doi:10.1016/j.jmps.2005.04.008
[26] Goriely A, Ben Amar M. (2005) Differential growth and instability in elastic shells. Phys. Rev. Lett. 94, 198103. (doi:10.1103/PhysRevLett.94.198103) · Zbl 1120.74336 · doi:10.1103/PhysRevLett.94.198103
[27] Audoly B, Pomeau Y. (2010) Elasticity and geometry: from hair curls to the non-linear response of shells. Oxford, UK: Oxford University Press. · Zbl 1223.74001
[28] Nardinocchi P, Teresi L. (2007) On the active response of soft living tissues. J. Elast. 88, 27-39. (doi:10.1007/s10659-007-9111-7) · Zbl 1115.74349 · doi:10.1007/s10659-007-9111-7
[29] Yavari A. (2010) A geometric theory of growth mechanics. J. Nonlinear Sci. 20, 781-830. (doi:10.1007/s00332-010-9073-y) · Zbl 1428.74157 · doi:10.1007/s00332-010-9073-y
[30] O’Neill B. (1997) Elementary differential geometry. New York, NY: Academic Press. · Zbl 0974.53001
[31] Efrati E, Sharon E, Kupferman R. (2010) Non-Euclidean plates and shells. See https://web.archive.org/web/20161107213906/http://math.huji.ac.il/razk/Publications/PDF/ESK09b.pdf.
[32] Lucantonio A, Tomassetti G, DeSimone A. (2016) Large-strain poroelastic plate theory for polymer gels with applications to swelling-induced morphing of composite plates. Compos. B 115, 330-340. (doi:10.1016/j.compositesb.2016.09.063) · doi:10.1016/j.compositesb.2016.09.063
[33] Moshe M, Sharon E, Kupferman R. (2013) Pattern selection and multiscale behaviour in metrically discontinuous non-Euclidean plates. Nonlinearity 26, 3247. (doi:10.1088/0951-7715/26/12/3247) · Zbl 1396.74028 · doi:10.1088/0951-7715/26/12/3247
[34] Ciarlet PG. (2000) Theory of shells. Mathematical elasticity. Amsterdam, The Netherlands: Elsevier Science. · Zbl 0953.74004
[35] Lucantonio A, Nardinocchi P, Pezzulla M. (2014) Swelling-induced and controlled curving in layered gel beams. Proc. R. Soc. A 470, 20140467. (doi:10.1098/rspa.2014.0467) · doi:10.1098/rspa.2014.0467
[36] Kebadze E, Guest SD, Pellegrino S. (2004) Bistable prestressed shell structures. Int. J. Solids Struct. 41, 2801-2820. (doi:10.1016/j.ijsolstr.2004.01.028) · Zbl 1119.74473 · doi:10.1016/j.ijsolstr.2004.01.028
[37] Lucantonio A, Nardinocchi P, Pezzulla M, Teresi L. (2014) Multiphysics of bio-hybrid systems: shape control and electro-induced motion. Smart Mater. Struct. 23, 045043. (doi:10.1088/0964-1726/23/4/045043) · doi:10.1088/0964-1726/23/4/045043
[38] Couturier E, Dumais J, Cerda E, Katifori E. (2013) Folding of an opened spherical shell. Soft Matter. 9, 8359-8367. (doi:10.1039/c3sm50575h) · doi:10.1039/c3sm50575h
[39] Cirak F, Ortiz M. (2001) Fully C1-conforming subdivision elements for finite deformation thin-shell analysis. Int. J. Numer. Methods Eng. 51, 813-833. (doi:10.1002/nme.182.abs) · Zbl 1039.74045 · doi:10.1002/nme.182.abs
[40] Müller MM, Amar MB, Guven J. (2008) Conical defects in growing sheets. Phys. Rev. Lett. 101, 156104. (doi:10.1103/PhysRevLett.101.156104) · doi:10.1103/PhysRevLett.101.156104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.