Skip to main content
Log in

Koiter’s Shell Theory from the Perspective of Three-dimensional Nonlinear Elasticity

  • Classroom Note
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Koiter’s shell model is derived systematically from nonlinear elasticity theory, and shown to furnish the leading-order model for small thickness when the bending and stretching energies are of the same order of magnitude. An extension of Koiter’s model to finite midsurface strain emerges when stretching effects are dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ciarlet, P.G.: An introduction to differential geometry with applications to elasticity. J. Elast. 78–79, 3–201 (2005)

    MathSciNet  Google Scholar 

  2. Koiter, W.T.: On the nonlinear theory of thin elastic shells. Proc. K. Ned. Akad. Wet. B 69, 1–54 (1966)

    MathSciNet  Google Scholar 

  3. Koiter, W.T.: A consistent first approximation in the general theory of thin elastic shells. In: Koiter, W.T. (ed.) Proc. IUTAM Symposium on the Theory of Thin Elastic Shells, Delft, pp. 12–33. North-Holland, Amsterdam (1960)

    Google Scholar 

  4. Steigmann, D.J.: Extension of Koiter’s linear shell theory to materials exhibiting arbitrary symmetry. Int. J. Eng. Sci. 51, 216–232 (2012)

    Article  MathSciNet  Google Scholar 

  5. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MATH  Google Scholar 

  6. Healey, T.J., Rosakis, P.: Unbounded branches of classical injective solutions to the forced displacement problem in nonlinear elastostatics. J. Elast. 49, 65–78 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Le Dret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 75, 551–580 (1995)

    Google Scholar 

  8. Dacarogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989)

    Book  Google Scholar 

  9. Pipkin, A.C.: The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math. 36, 85–99 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hilgers, M.G., Pipkin, A.C.: Bending energy of highly elastic membranes. Q. Appl. Math. 50, 389–400 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Hilgers, M.G., Pipkin, A.C.: Bending energy of highly elastic membranes II. Q. Appl. Math. 54, 307–316 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Steigmann, D.J.: Applications of polyconvexity and strong ellipticity to nonlinear elasticity and elastic plate theory. In: Schröder, J., Neff, P. (eds.) CISM Course on Applications of Poly-, Quasi-, and Rank-One Convexity in Applied Mechanics, vol. 516, pp. 265–299. Springer, Vienna (2010)

    Chapter  Google Scholar 

  13. Hilgers, M.G., Pipkin, A.C.: The Graves condition for variational problems of arbitrary order. IMA J. Appl. Math. 48, 265–269 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Ciarlet, P.G.: Plates and Junctions in Elastic Multi-structures: An Asymptotic Analysis. Springer, Berlin (1990)

    MATH  Google Scholar 

  15. Miara, B., Lods, V.: Nonlinearly elastic shell models I. The membrane model. Arch. Ration. Mech. Anal. 142, 331–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miara, B.: Nonlinearly elastic shells II. The flexural model. Arch. Ration. Mech. Anal. 142, 355–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciarlet, P.G., Roquefort, A.: Justification d’un modèle bi-dimensionnel non linéaire de coque analogue à celui de W.T Koiter. C. R. Acad. Sci., Sér. I 331, 411–416 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Steigmann, D.J.: Thin-plate theory for large elastic deformations. Int. J. Non-Linear Mech. 42, 233–240 (2007)

    Article  ADS  MATH  Google Scholar 

  19. Koiter, W.T.: Foundations and basic equations of shell theory. A survey of recent progress. In: Niordson, F.I. (ed.) Proc. IUTAM Symposium on the Theory of Thin Shells, Copenhagen, pp. 93–105. Springer, Berlin (1968)

    Google Scholar 

  20. Fox, D.D., Raoult, A., Simo, J.C.: A justification of nonlinear properly invariant plate theories. Arch. Ration. Mech. Anal. 124, 157–199 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pietraszkiewicz, W.: Geometrically nonlinear theories of thin elastic shells. Adv. Mech. 12, 52–130 (1989)

    MathSciNet  Google Scholar 

  22. Friesecke, G., James, R.D., Mora, M.G., Müller, S.: Derivation of nonlinear bending theory for shells from three-dimensional elasticity by Gamma-convergence. C. R. Acad. Sci., Sér. I 336, 697–702 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This note was inspired by a course on Shell Theory delivered by the writer at the University of California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Steigmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steigmann, D.J. Koiter’s Shell Theory from the Perspective of Three-dimensional Nonlinear Elasticity. J Elast 111, 91–107 (2013). https://doi.org/10.1007/s10659-012-9393-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9393-2

Keywords

Mathematics Subject Classification

Navigation