×

Dilation-invariant bending of elastic plates, and broken symmetry in shells. (English) Zbl 1524.74334

Summary: We propose bending energies for isotropic elastic plates and shells. For a plate, we define and employ a surface tensor that symmetrically couples stretch and curvature such that any elastic energy density constructed from its invariants is invariant under spatial dilations. This kinematic measure and its corresponding isotropic quadratic energy resolve outstanding issues in thin structure elasticity, including the natural extension of primitive bending strains for straight rods to plates, the assurance of a moment linear in the bending measure, and the avoidance of induced mid-plane strains in response to pure moments as found in some commonly used analytical plate models. Our analysis also reveals that some other commonly used numerical models have the right invariance properties, although they lack full generality at quadratic order in stretch. We further extend our result to naturally-curved rods and shells, for which the pure stretching of a curved rest configuration breaks dilation invariance; the new shell bending measure we provide contrasts with previous ad hoc postulated forms. The concept that unifies these theories is not dilation invariance, but rather through-thickness uniformity of strain as a definition of pure stretching deformations. Our results provide a clean basis for simple models of low-dimensional elastic systems, and should enable more accurate analytical probing of the structure of singularities in sheets and membranes.

MSC:

74K20 Plates
74K25 Shells
74B20 Nonlinear elasticity

References:

[1] Antman, S. S., Nonlinear Problems of Elasticity (2005), New York: Springer, New York · Zbl 1098.74001
[2] Villaggio, P., Mathematical Models of Elastic Structures (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0978.74002 · doi:10.1017/CBO9780511529665
[3] Klein, Y.; Efrati, E.; Sharon, E., Shaping of elastic sheets by prescription of non-Euclidean metrics, Science, 315, 1116-1120 (2007) · Zbl 1226.74013 · doi:10.1126/science.1135994
[4] Guven, J.; Müller, M. M., How paper folds: bending with local constraints, J. Phys. A, 41 (2008) · Zbl 1131.74030 · doi:10.1088/1751-8113/41/5/055203
[5] Peterson, M. A., Lagrangian crumpling equations, Phys. Rev. E, 80 (2009) · doi:10.1103/PhysRevE.80.021602
[6] Mellado, P.; Cheng, S.; Concha, A., Mechanical response of a self-avoiding membrane: fold collisions and the birth of conical singularities, Phys. Rev. E, 83 (2011) · doi:10.1103/PhysRevE.83.036607
[7] Vernizzi, G.; Sknepnek, R.; Olvera de la Cruz, M., Platonic and Archimedean geometries in multicomponent elastic membranes, Proc. Natl. Acad. Sci., 108, 4292-4296 (2011) · doi:10.1073/pnas.1012872108
[8] Kim, J.; Hanna, J. A.; Byun, M.; Santangelo, C. D.; Hayward, R. C., Designing responsive buckled surfaces by halftone gel lithography, Science, 335, 1201-1205 (2012) · Zbl 1355.74027 · doi:10.1126/science.1215309
[9] Gemmer, J.; Venkataramani, S. C., Shape transitions in hyperbolic non-Euclidean plates, Soft Matter, 9, 8151 (2013) · doi:10.1039/c3sm50479d
[10] Nguyen, T.-S.; Selinger, J. V., Theory of liquid crystal elastomers and polymer networks, Eur. Phys. J. E, 40, 76 (2017) · doi:10.1140/epje/i2017-11569-5
[11] Plucinsky, P.; Kowalski, B. A.; White, T. J.; Bhattacharya, K., Patterning nonisometric origami in nematic elastomer sheets, Soft Matter, 14, 3127-3134 (2018) · doi:10.1039/C8SM00103K
[12] Krieger, M. S.; Dias, M. A., Tunable wrinkling of thin nematic liquid crystal elastomer sheets, Phys. Rev. E, 100 (2019) · doi:10.1103/PhysRevE.100.022701
[13] Battista, D.; Curatolo, M.; Nardinocchi, P., Swelling-induced eversion and flattening in naturally curved gel beams, Int. J. Mech. Sci., 161-162 (2019) · doi:10.1016/j.ijmecsci.2019.105071
[14] Stein-Montalvo, L.; Costa, P.; Pezzulla, M.; Holmes, D. P., Buckling of geometrically confined shells, Soft Matter, 15, 1215-1222 (2019) · doi:10.1039/C8SM02035C
[15] Li, S.; Zandi, R.; Travesset, A.; Grason, G. M., Ground states of crystalline caps: generalized jellium on curved space, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.145501
[16] Davidovitch, B.; Sun, Y.; Grason, G. M., Geometrically incompatible confinement of solids, Proc. Natl. Acad. Sci., 116, 1483-1488 (2019) · Zbl 1416.74069 · doi:10.1073/pnas.1815507116
[17] Efrati, E.; Sharon, E.; Kupferman, R., Elastic theory of unconstrained non-Euclidean plates, J. Mech. Phys. Solids, 57, 762-775 (2009) · Zbl 1306.74031 · doi:10.1016/j.jmps.2008.12.004
[18] Irschik, H.; Gerstmayr, J., A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli-Euler beams, Acta Mech., 206, 1-21 (2009) · Zbl 1167.74028 · doi:10.1007/s00707-008-0085-8
[19] Oshri, O.; Diamant, H., Strain tensor selection and the elastic theory of incompatible thin sheets, Phys. Rev. E, 95 (2017) · doi:10.1103/PhysRevE.95.053003
[20] Wood, H. G.; Hanna, J. A., Contrasting bending energies from bulk elastic theories, Soft Matter, 15, 2411-2417 (2019) · doi:10.1039/C8SM02297F
[21] Witten, T. A., Stress focusing in elastic sheets, Rev. Mod. Phys., 79, 643-675 (2007) · Zbl 1205.74116 · doi:10.1103/RevModPhys.79.643
[22] Vitral, E.; Hanna, J. A., Energies for elastic plates and shells from quadratic-stretch elasticity, J. Elast. (2022) · Zbl 1519.74045 · doi:10.1007/s10659-022-09895-3
[23] Seung, H. S.; Nelson, D. R., Defects in flexible membranes with crystalline order, Phys. Rev. A, 38, 2, 1005-1018 (1988) · doi:10.1103/PhysRevA.38.1005
[24] Antman, S., General solutions for plane extensible elasticae having nonlinear stress-strain laws, Q. Appl. Math., 26, 1, 35-47 (1968) · Zbl 0157.56505 · doi:10.1090/qam/99868
[25] Reissner, E., On one-dimensional finite-strain beam theory: the plane problem, Z. Angew. Math. Phys., 23, 795-804 (1972) · Zbl 0248.73022 · doi:10.1007/BF01602645
[26] Whitman, A. B.; DeSilva, C. N., An exact solution in a nonlinear theory of rods, J. Elast., 4, 4, 265-280 (1974) · Zbl 0295.73052 · doi:10.1007/BF00048610
[27] Oshri, O.; Biswas, S.; Balazs, A. C., Modeling the formation of double rolls from heterogeneously patterned gels, Phys. Rev. E, 99 (2019) · doi:10.1103/PhysRevE.99.033003
[28] Atluri, S. N., Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations, for computational analyses of finitely deformed solids, with application to plates and shells—I: Theory, Comput. Struct., 18, 1, 93-116 (1984) · Zbl 0524.73043 · doi:10.1016/0045-7949(84)90085-3
[29] Knoche, S.; Kierfeld, J., Buckling of spherical capsules, Phys. Rev. E, 84 (2011) · doi:10.1103/PhysRevE.84.046608
[30] Pietraszkiewicz, W.; Szwabowicz, M. L.; Vallée, C., Determination of the midsurface of a deformed shell from prescribed surface strains and bendings via the polar decomposition, Int. J. Non-Linear Mech., 43, 7, 579-587 (2008) · Zbl 1203.74098 · doi:10.1016/j.ijnonlinmec.2008.02.003
[31] Vitral, E.; Hanna, J. A., Quadratic-stretch elasticity, Math. Mech. Solids (2021) · Zbl 07590434 · doi:10.1177/10812865211022417
[32] Willmore, T. J., Note on embedded surfaces, Analele ştiinţifice ale Universităţii “Alexandru Ioan Cuza” din Iaşi (Serie Nouă). Matematică, 11B, 493-496 (1965) · Zbl 0171.20001
[33] Helfrich, W., Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch., C, 28, 11, 693-703 (1973) · doi:10.1515/znc-1973-11-1209
[34] Vouga, E.: Lectures in discrete differential geometry 1 - plane curves. https://www.cs.utexas.edu/users/evouga/uploads/4/5/6/8/45689883/notes1.pdf
[35] Green, A. E.; Zerna, W., Theoretical Elasticity (1992), Mineola: Dover, Mineola · Zbl 0863.73005
[36] Eringen, A. C., Mechanics of Continua (1967), New York: Wiley, New York · Zbl 0222.73001
[37] Hanna, J. A., Some observations on variational elasticity and its application to plates and membranes, Z. Angew. Math. Phys., 70, 76 (2019) · Zbl 1439.74167 · doi:10.1007/s00033-019-1122-2
[38] Horgan, C. O.; Smayda, M. G., The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials, Mech. Mater., 51, 43-52 (2012) · doi:10.1016/j.mechmat.2012.03.007
[39] White, J. H., A global invariant of conformal mappings in space, Proc. Am. Math. Soc., 38, 162-164 (1973) · Zbl 0256.53008 · doi:10.1090/S0002-9939-1973-0324603-1
[40] Wisniewski, K., A shell theory with independent rotations for relaxed Biot stress and right stretch strain, Comput. Mech., 21, 2, 101-122 (1998) · Zbl 0909.73051 · doi:10.1007/s004660050287
[41] Chen, H-Y.; Sastry, A.; van Rees, W. M.; Vouga, E., Physical simulation of environmentally induced thin shell deformation, ACM Trans. Graph., 37, 4, 1-13 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.