×

Double bubble plumbings and two-curve flops. (English) Zbl 1518.14058

The paper under review addresses the fundamental question of finding geometric models for a Calabi-Yau 3-category associated with a quiver with a potential, focusing on a specific example.
Let \(k\) be a field. Consider a quiver \(Q\), which is a finite directed graph. A potential \(W\) on \(Q\) represents a formal \(k\)-linear combination of oriented cycles of the graph. Since an oriented cycle can be seen as a cyclic word on the arrows of \(Q\), one can take a cyclic derivative \(\partial_a W\) of a potential \(W\) with respect to a given arrow \(a\). The Jacobian algebra of \((Q, W)\) is defined as the quotient algebra \(\text{Path}(Q)/(\partial_a W)\), where \(\text{Path}(Q)\) denotes the path algebra generated by arrows and \((\partial_a W)\) is the two-sided ideal generated by \(\partial_a W\). Ginzburg introduced its derived enhancement, denoted as \(\mathcal{D}(Q, W)\), which is a Calabi-Yau 3-algebra now referred to as the Ginzburg DG algebra associated with \((Q, W)\).
The most natural setting for the appearance of such algebras is homological mirror symmetry. Consequently, it becomes important to find a geometric model for them within this context. Specifically, one could attempt to realize \(\mathcal{D}(Q, W)\text{-mod}\) as the Fukaya category of a 6-dimensional symplectic manifold or the derived category of coherent sheaves on a Calabi-Yau 3-fold. Alternatively, one could explore the same question for the Koszul dual algebra \(\mathcal{D}^!(Q, W)\).
In the Koszul dual description, if the quiver \(Q\) lacks self-loops, one has a spherical object \(\mathcal{F}_v\) for each vertex \(v\), meaning \(H^\bullet(\text{End}(\mathcal{F}_v))\cong H^\bullet(S^3)\). Moreover, each arrow from \(v\) to \(w\) in \(Q\) yields a basis element of \(\text{Hom}^1(\mathcal{F}_v, \mathcal{F}_w)\), which determines the other degrees based on the Calabi-Yau property. Finally, the potential \(W\) can be employed to identify an \(A_\infty\)-structure on \(\displaystyle\bigoplus_{a\colon v\to w}\text{Hom}^\bullet (\mathcal{F}_v, \mathcal{F}_w)\); each degree \(d\) component corresponds to the \((d-1)\)-ary operation \(\mu^{d-1}\) of the \(A\infty\)-structure.
The current paper presents geometric models for the simplest quiver (without a self-loop) with a nontrivial potential. That is, consider the quiver consisting of two vertices and arrows \(e\) and \(f\) forming a cycle together with the potential \(W(n) = (ef)^n\). It is worth noting that when \(n\geq 2\), no differentials are involved.
The first model is based on the A-side. The primary construction involves plumbing two copies of \(T^*S^3\) along \(S^1\), where the embedding \(S^1\hookrightarrow S^3\) is assumed to be unknotted. This construction can be viewed as the standard plumbing of 2-manifolds for each fiber of the normal bundle to \(S^1\hookrightarrow S^3\). The resulting manifolds depend on the choice of a trivialization of the normal bundle, which is parametrized by \(\mathbb{Z}\). Up to symplectomorphisms, they can be parametrized by \(\{W_0, W_1, \cdots \}\). Note that there are two core 3-spheres, denoted as \(Q_0\) and \(Q_1\). We denote the subcategory of the Fukaya category \(\text{Fuk}(W_i)\) generated by \(Q_0\) and \(Q_1\) as \(\mathcal{Q}_i\).
The second model utilizes the B-side geometry. Consider \(R_0=k[u,v,x,y]/(uv-xy^2)\) and \(R_i=k[u,v,x,y]/(uv-xy(x^i +y ))\) for \(i\geq 1\), which have isolated singularities at 0. The spectrum \(\text{Spec}(R_i)\) admits a crepant resolution \(Y_i\), resulting in two rational curves \(C_1\) and \(C_2\) intersecting at a point, or \(\mathcal{O}_{C_1}(-1)\) and \(\mathcal{O}_{C_2}(-1)\), both of which turn out to be spherical. We denote the subcategory of the derived category \(\text{Coh}(Y_i)\) generated by \(\mathcal{O}_{C_1}(-1)\) and \(\mathcal{O}_{C_2}(-1)\) as \(\mathcal{C}_i\).
The main results establish that these two categories, \(\mathcal{Q}_i\) and \(\mathcal{C}_i\), represent the given quiver with potential. Specifically, when \(k=\mathbb{C}\), the categories \(\mathcal{Q}_0\simeq \mathcal{C}_0\) represent the case of \(W=0\), and \(\mathcal{Q}_i\simeq \mathcal{C}_1\) represents the case of \(W=W(2) = (ef)^2\). Moreover, if \(k\) is a field with an odd prime characteristic \(p\), then \(\mathcal{Q}_p\simeq \mathcal{C}_p\) represents the case of \(W=W(p)\) (the potential doesn’t really behave as well as we would like in the finite characteristic, but there is a sense in which the result holds). These results also respect the natural symmetry of braid groups. Additionally, by employing the machinery of Koszul duality, the paper proves that the wrapped Fukaya category of \(W_i\) is equivalent to the singularity category \(\text{Coh}(Y_i)/\langle \mathcal{O}_{Y_i} \rangle\).

MSC:

14J33 Mirror symmetry (algebro-geometric aspects)
14J30 \(3\)-folds
16S38 Rings arising from noncommutative algebraic geometry
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category

Software:

GAP

References:

[1] Abouzaid, M., A topological model for the Fukaya categories of plumbings, J. Differ. Geom., 87, 1, 1-80 (2011) · Zbl 1228.57015
[2] Abouzaid, M.; Auroux, D.; Katzarkov, L., Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces, Publ. Math. Inst. Hautes Études Sci., 123, 199-282 (2016) · Zbl 1368.14056 · doi:10.1007/s10240-016-0081-9
[3] Abouzaid, M.; Smith, I., Exact Lagrangians in plumbings, Geom. Funct. Anal., 22, 4, 785-831 (2012) · Zbl 1266.53073 · doi:10.1007/s00039-012-0162-y
[4] Biran, P.; Cornea, O., Lagrangian cobordism I, J. Am. Math. Soc., 26, 2, 295-340 (2013) · Zbl 1272.53071 · doi:10.1090/S0894-0347-2012-00756-5
[5] Biran, P.; Membrez, C., The Lagrangian cubic equation, Int. Math. Res. Not. IMRN, 9, 2569-2631 (2016) · Zbl 1404.53101 · doi:10.1093/imrn/rnv192
[6] Booth, M.: The derived contraction algebra. arXiv:1911.09626
[7] Bourgeois, F., Ekholm T., Eliashberg Y.: Effect of Legendrian surgery. Geom. Topol. 16(1), 301-389 (2012). (With an appendix by Sheel Ganatra and Maksim Maydanskiy) · Zbl 1322.53080
[8] Bridgeland, T., Flops and derived categories, Invent. Math., 147, 3, 613-632 (2002) · Zbl 1085.14017 · doi:10.1007/s002220100185
[9] Bridgeland, T., Stability conditions on triangulated categories, Ann. Math. (2), 166, 2, 317-345 (2007) · Zbl 1137.18008 · doi:10.4007/annals.2007.166.317
[10] Brown, G., Wemyss, M.: Local normal forms of noncommutative functions. arXiv:2111.05900
[11] Buijs, U.; Moreno-Fernández, JM; Murillo, A., \(A_\infty\) structures and Massey products, Mediterr. J. Math., 17, 1, 15 (2020) · Zbl 1439.55020 · doi:10.1007/s00009-019-1464-1
[12] Burban, I.; Kalck, M., The relative singularity category of a non-commutative resolution of singularities, Adv. Math., 231, 1, 414-435 (2012) · Zbl 1249.14004 · doi:10.1016/j.aim.2012.05.012
[13] Chantraine, B., Dmitroglou R., Georgios, G., Paolo, G., Roman: geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors. arXiv:1712.09126
[14] Davison, B.: Refined invariants of finite-dimensional Jacobi algebras. arXiv:1903.00659
[15] Donovan, W.; Segal, E., Mixed braid group actions from deformations of surface singularities, Commun. Math. Phys., 335, 1, 497-543 (2015) · Zbl 1327.14185 · doi:10.1007/s00220-014-2226-3
[16] Donovan, W.; Wemyss, M., Contractions and deformations, Am. J. Math., 141, 3, 563-592 (2019) · Zbl 1420.14022 · doi:10.1353/ajm.2019.0018
[17] Donovan, W.; Wemyss, M., Noncommutative enhancements of contractions, Adv. Math., 344, 99-136 (2019) · Zbl 1414.14002 · doi:10.1016/j.aim.2018.11.019
[18] Donovan, W.; Wemyss, M., Twists and braids for general 3-fold flops, J. Eur. Math. Soc., 21, 6, 1641-1701 (2019) · Zbl 1431.14031 · doi:10.4171/JEMS/868
[19] Ekholm, T., Lekili, Y.: Duality between Lagrangian and Legendrian invariants. arXiv:1701.01284
[20] Evans, JD; Lekili, Y., Generating the Fukaya categories of Hamiltonian \(G\)-manifolds, J. Am. Math. Soc., 32, 1, 119-162 (2019) · Zbl 1401.53075 · doi:10.1090/jams/909
[21] Gabai, D., Foliations and the topology of \(3\)-manifolds III, J. Differ. Geom., 26, 3, 479-536 (1987) · Zbl 0639.57008
[22] Gabriel, P.; Riedtmann, C., Group representations without groups, Comment. Math. Helv., 54, 2, 240-287 (1979) · Zbl 0447.16023 · doi:10.1007/BF02566271
[23] Ganatra, S.: Cyclic homology, \(S^1\)-equivariant Floer cohomology and Calabi-Yau structures. arXiv:1912.13510
[24] Ganatra, S., Pomerleano, D.: A log PSS morphism with applications to Lagrangian embeddings. arXiv:1611.06849 · Zbl 1469.53126
[25] Ginzburg, V.: Calabi-Yau algebras. arXiv:math/0612139 · Zbl 1204.14004
[26] Green, E., Solberg, O.: Quivers and path algebras—a GAP package, version 1.31 (2020)
[27] Greer, F., A Lagrangian sphere which is not a vanishing cycle, Invent. Math., 219, 2, 333-343 (2020) · Zbl 1467.32012 · doi:10.1007/s00222-019-00900-6
[28] Hirano, Y.; Wemyss, M., Faithful actions from hyperplane arrangements, Geom. Topol., 22, 6, 3395-3433 (2018) · Zbl 1401.18033 · doi:10.2140/gt.2018.22.3395
[29] Ishii, A.; Uehara, H., Autoequivalences of derived categories on the minimal resolutions of \(A_n\)-singularities on surfaces, J. Differ. Geom., 71, 3, 385-435 (2005) · Zbl 1097.14013
[30] Iyama, O.; Wemyss, M., Maximal modifications and Auslander-Reiten duality for non-isolated singularities, Invent. Math., 197, 3, 521-586 (2014) · Zbl 1308.14007 · doi:10.1007/s00222-013-0491-y
[31] Iyama, O.; Wemyss, M., Singular derived categories of \({\mathbb{Q} } \)-factorial terminalizations and maximal modification algebras, Adv. Math., 261, 85-121 (2014) · Zbl 1326.14033 · doi:10.1016/j.aim.2014.04.001
[32] Iyama, O.; Wemyss, M., Reduction of triangulated categories and maximal modification algebras for \(cA_n\) singularities, J. Reine Angew. Math., 738, 149-202 (2018) · Zbl 1428.18012 · doi:10.1515/crelle-2015-0031
[33] Kalck, M.; Iyama, O.; Wemyss, M.; Yang, D., Frobenius categories, Gorenstein algebras and rational surface singularities, Compos. Math., 151, 3, 502-534 (2015) · Zbl 1327.14172 · doi:10.1112/S0010437X14007647
[34] Kalck, M.; Yang, D., Relative singularity categories I: Auslander resolutions, Adv. Math., 301, 973-1021 (2016) · Zbl 1348.14009 · doi:10.1016/j.aim.2016.06.011
[35] Kawamata, Y., On multi-pointed non-commutative deformations and Calabi-Yau threefolds, Compos. Math., 154, 9, 1815-1842 (2018) · Zbl 1423.14017 · doi:10.1112/S0010437X18007248
[36] Keating, AM, Dehn twists and free subgroups of symplectic mapping class groups, J. Topol., 7, 2, 436-474 (2014) · Zbl 1322.53084 · doi:10.1112/jtopol/jtt033
[37] Keller, B.; Murfet, D.; Van den Bergh, M., On two examples by Iyama and Yoshino, Compos. Math., 147, 2, 591-612 (2011) · Zbl 1264.13016 · doi:10.1112/S0010437X10004902
[38] Keller, B.; Yang, D., Derived equivalences from mutations of quivers with potential, Adv. Math., 226, 3, 2118-2168 (2011) · Zbl 1272.13021 · doi:10.1016/j.aim.2010.09.019
[39] Khovanov, M.; Seidel, P., Quivers, Floer cohomology, and braid group actions, J. Am. Math. Soc., 15, 1, 203-271 (2002) · Zbl 1035.53122 · doi:10.1090/S0894-0347-01-00374-5
[40] Kontsevich, M., Soibelman, Y.: Notes on \(A_\infty \)-algebras, \(A_\infty \)-categories and non-commutative geometry. In: Homological Mirror Symmetry. Lecture Notes in Physics, vol. 757, pp. 153-219. Springer, Berlin (2009) · Zbl 1202.81120
[41] Kotschick, D.; Neofytidis, C., On three-manifolds dominated by circle bundles, Math. Z., 274, 1-2, 21-32 (2013) · Zbl 1277.57003 · doi:10.1007/s00209-012-1055-3
[42] Lau, S-C, Open Gromov-Witten invariants and SYZ under local conifold transitions, J. Lond. Math. Soc. (2), 90, 2, 413-435 (2014) · Zbl 1326.53126 · doi:10.1112/jlms/jdu032
[43] Lazaroiu, C.I.: Generating the superpotential on a D-brane category, I. arXiv:hep-th/0610120
[44] Lekili, Y., Ueda, K.: Homological mirror symmetry for Milnor fibres via moduli of \({A}_{\infty }\)-structures. arXiv:1806.04345 · Zbl 1476.53104
[45] Li, Y.: Exact Calabi-Yau categories and disjoint Lagrangian spheres. arXiv:1907.09257
[46] Lu, DM; Palmieri, JH; Wu, QS; Zhang, JJ, Koszul equivalences in \(A_\infty \)-algebras, N. Y. J. Math, 14, 325-378 (2008) · Zbl 1191.16011
[47] Lu, DM; Palmieri, JH; Wu, QS; Zhang, JJ, \(A\)-infinity structure on ext-algebras, J. Pure Appl. Algebra, 213, 11, 2017-2037 (2009) · Zbl 1231.16008 · doi:10.1016/j.jpaa.2009.02.006
[48] Mak, CY; Wu, W., Dehn twist exact sequences through Lagrangian cobordism, Compos. Math., 154, 12, 2485-2533 (2018) · Zbl 1508.53092 · doi:10.1112/S0010437X18007479
[49] Mak, CY; Wu, W., Dehn twists and Lagrangian spherical manifolds, Selecta Math. (N.S.), 25, 5, 85 (2019) · Zbl 1436.53063 · doi:10.1007/s00029-019-0515-6
[50] Morrison, DR, The birational geometry of surfaces with rational double points, Math. Ann., 271, 3, 415-438 (1985) · Zbl 0539.14008 · doi:10.1007/BF01456077
[51] Perutz, T., Lagrangian matching invariants for fibred four-manifolds I, Geom. Topol., 11, 759-828 (2007) · Zbl 1143.53079 · doi:10.2140/gt.2007.11.759
[52] Poźniak, M.: Floer homology, Novikov rings and clean intersections. In: Northern California Symplectic Geometry Seminar, Volume 196 of American Mathematical Society Translations: Series 2, pp. 119-181. Amer. Math. Soc., Providence (1999) · Zbl 0948.57025
[53] Raymond, F., Classification of the actions of the circle on \(3\)-manifolds, Trans. Am. Math. Soc., 131, 51-78 (1968) · Zbl 0157.30602 · doi:10.1090/S0002-9947-1968-0219086-9
[54] Schmäschke, F.: Floer homology of Lagrangians in clean intersection. arXiv:1606.05327
[55] Seidel, P., Graded Lagrangian submanifolds, Bull. Soc. Math. France, 128, 1, 103-149 (2000) · Zbl 0992.53059 · doi:10.24033/bsmf.2365
[56] Seidel, P.: Fukaya Categories and Picard-Lefschetz Theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008) · Zbl 1159.53001
[57] Seidel, P., Suspending Lefschetz fibrations, with an application to local mirror symmetry, Commun. Math. Phys., 297, 2, 515-528 (2010) · Zbl 1197.14044 · doi:10.1007/s00220-009-0944-8
[58] Seidel, P.; Solomon, JP, Symplectic cohomology and \(q\)-intersection numbers, Geom. Funct. Anal., 22, 2, 443-477 (2012) · Zbl 1250.53078 · doi:10.1007/s00039-012-0159-6
[59] Sheridan, N., On the homological mirror symmetry conjecture for pairs of pants, J. Differ. Geom., 89, 2, 271-367 (2011) · Zbl 1255.53065
[60] Sheridan, N., Formulae in noncommutative Hodge theory, J. Homotopy Relat. Struct., 15, 1, 249-299 (2020) · Zbl 1506.14025 · doi:10.1007/s40062-019-00251-2
[61] Sheridan, N.; Smith, I., Lagrangian cobordism and tropical curves, J. Reine Angew. Math., 774, 219-265 (2021) · Zbl 1482.53102 · doi:10.1515/crelle-2020-0035
[62] Smith, I., Floer cohomology and pencils of quadrics, Invent. Math., 189, 1, 149-250 (2012) · Zbl 1255.14032 · doi:10.1007/s00222-011-0364-1
[63] Smith, I.; Thomas, R., Symplectic surgeries from singularities, Turk. J. Math., 27, 1, 231-250 (2003) · Zbl 1031.57022
[64] The GAP Group. GAP-Groups, Algorithms, and Programming, Version 4.11.1 (2021)
[65] Toda, Y., On a certain generalization of spherical twists, Bull. Soc. Math. France, 135, 1, 119-134 (2007) · Zbl 1155.18010 · doi:10.24033/bsmf.2529
[66] Van den Bergh, M., Three-dimensional flops and noncommutative rings, Duke Math. J., 122, 3, 423-455 (2004) · Zbl 1074.14013
[67] Wemyss, M., Reconstruction algebras of type \(A\), Trans. Am. Math. Soc., 363, 6, 3101-3132 (2011) · Zbl 1270.16022 · doi:10.1090/S0002-9947-2011-05130-5
[68] Wemyss, M., Flops and clusters in the homological minimal model programme, Invent. Math., 211, 2, 435-521 (2018) · Zbl 1390.14012 · doi:10.1007/s00222-017-0750-4
[69] Zhang, H.: Local normal forms for the doubled \({A}_3\) quiver (in preparation)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.