×

Symplectic cohomology and \(q\)-intersection numbers. (English) Zbl 1250.53078

This paper introduces a ‘\(q\)-analogue’ of the classical Picard-Lefschetz formula for the action of a Dehn twist on the middle-dimensional cohomology of a variety, in the presence of certain additional structures and assumptions. This \(q\)-analogue is introduced via a ‘categorification’ of the Picard-Lefschetz formula by Lagrangian Floer cohomology, which we briefly recall. Given two Lagrangian submanifolds \(L_0\), \(L_1\) of a symplectic \(2n\)-manifold \(M\), under suitable assumptions, Lagrangian Floer cohomology [A. Floer, J. Differ. Geom. 28, No. 3, 513–547 (1988; Zbl 0674.57027)] defines a graded vector space \(HF^*(L_0,L_1)\) which categorifies the topological intersection number in the sense that \[ \chi(HF^*(L_0,L_1)) = (-1)^{n+1}L_0 \cdot L_1. \] Seidel’s long exact sequence [P. Seidel, Topology 42, No. 5, 1003–1063 (2003; Zbl 1032.57035)] categorifies the Picard-Lefschetz formula (in the setting that \(M\) is exact and convex at infinity).
One part of the extra structure needed to define the \(q\)-analogue of this story is the notion of a ‘dilation’: a class \(B\) in the symplectic cohomology \(SH^*(M)\) which is mapped to the identity by the BV operator (for a discussion of the BV operator, see [P. Seidel, in: Current developments in mathematics, 2006. Somerville, MA: International Press. 211–253 (2008; Zbl 1165.57020)]). Given a dilation \(B\), the notion of a ‘\(B\)-equivariant Lagrangian submanifold’ is introduced. If \(L_0\) and \(L_1\) are \(B\)-equivariant Lagrangians, then the leading order part of \(\Phi(B)\), where \[ \Phi: SH^*(M) \rightarrow HH^*(\mathcal{F}(M)) \] is the closed-open string map [P. Seidel, in: Proceedings of the international congress of mathematicians, ICM 2002, Beijing, China. Vol. II: Invited lectures. Beijing: Higher Education Press. 351–360 (2002; Zbl 1014.53052)], gives a (graded) endomorphism \[ \Phi^1(B) \in \mathrm{Hom}(HF^*(L_0,L_1), HF^*(L_0,L_1)). \] The generalized eigenspaces of \(\Phi^1(B)\) give a decomposition \[ HF^*(L_0,L_1) \cong \bigoplus_{\lambda \in \mathbb{C}} HF^*(L_0,L_1)^{\lambda}. \] Taking the Euler characteristic yields the ‘\(q\)-intersection number’ \[ L_0 \bullet_q L_1 := \sum_{\lambda} \chi(HF^*(L_0,L_1)^{\lambda}) q^{\lambda}. \] The usual intersection number is recovered by setting \(q=1\).
Various nice properties of the \(q\)-intersection numbers are proven. For example, one has \[ L_1 \bullet_{q^{-1}} L_0 = (-1)^n q^{-1} (L_0 \bullet_q L_1), \] and also the aforementioned \(q\)-analogue of the Picard-Lefschetz formula: if \(\tau_V: M \rightarrow M\) is the generalized Dehn twist along a Lagrangian sphere \(V \subset M\), then \[ \tau_V(L_0) \bullet_q L_1 = L_0 \bullet_q L_1 + (-1)^{n+1} q^{-1} (L_0 \bullet_q V)(V \bullet_q L_1). \] The authors consider the question of the existence or otherwise of dilations for various manifolds, including for cotangent bundles, and prove that if the fibre of a Lefschetz fibration admits a dilation, then so does the total space; this allows them to show, in particular, that \(A_m\) Milnor fibres admit dilations.
We remark that the whole construction is motivated by homological mirror symmetry, as is the nomenclature: the mirror to a dilation is an algebraic vector field which contracts the holomorphic volume form, and equivariant Lagrangians correspond to coherent sheaves which are infinitesimally equivariant under the deformation of the category of coherent sheaves coming from this vector field.

MSC:

53D40 Symplectic aspects of Floer homology and cohomology
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category

References:

[1] Abbondandolo A., Schwarz M.: On the Floer homology of cotangent bundles. Comm. Pure Appl. Math. 59, 254–316 (2006) · Zbl 1084.53074 · doi:10.1002/cpa.20090
[2] M. Abouzaid, A geometric criterion for generating the Fukaya category, preprint (2010); arXiv:1001.4593 · Zbl 1215.53078
[3] M. Abouzaid, A cotangent fibre generates the Fukaya category, preprint (2010); arXiv:1003.4449 · Zbl 1241.53071
[4] P. Albers, A Lagrangian Piunikhin–Salamon–Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. Art. ID 134 (2008), 56pp. · Zbl 1158.53066
[5] P. Albers, M. McLean, Non-displaceable contact embeddings and infinitely many leaf-wise intersections, preprint (2009). · Zbl 1239.53106
[6] V.I. Arnol’d, Some remarks on symplectic monodromy of Milnor fibrations, in ”The Floer Memorial Volume”(H. Hofer, C. Taubes, A. Weinstein, E. Zehnder, eds.), Progress in Mathematics 133, Birkhäuser (1995), 99–104.
[7] Auroux D.: Mirror symmetry and T -duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. GGT 1, 51–91 (2007) · Zbl 1181.53076
[8] Bourgeois F., Oancea A.: An exact sequence for contact- and symplectic homology. Invent. Math. 175, 611–680 (2009) · Zbl 1167.53071 · doi:10.1007/s00222-008-0159-1
[9] F. Bourgeois, A. Oancea, The Gysin exact sequence for S1-equivariant symplectic homology, preprint (2009); arXiv:0909.4526
[10] Burghelea D., Vigué-Poirrier M.: A model for cyclic homology and algebraic K-theory of 1-connected topological spaces. J. Differential Geom. 22, 243–253 (1985) · Zbl 0595.55009
[11] Cieliebak K., Floer A., Hofer H.: Symplectic homology II: a general construction. Math. Z. 218, 103–122 (1995) · Zbl 0869.58011 · doi:10.1007/BF02571891
[12] R. Cohen, J. Jones, J. Yan, The loop homology algebra of spheres and projective spaces, in ”Categorical Decomposition Techniques in Algebraic Topology (Isle of Skye, 2001)”, Birkhäuser (2004), 77–92.
[13] Floer A.: Morse theory for Lagrangian intersections. J. Differential Geom. 28, 513–547 (1988) · Zbl 0674.57027
[14] Floer A., Hofer H.: Coherent orientations for periodic orbit problems in symplectic geometry. Math. Z. 212, 13–38 (1993) · Zbl 0789.58022 · doi:10.1007/BF02571639
[15] K. Fukaya, Y. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory – Anomaly and Obstruction (2 vols), Amer. Math. Soc., 2009. · Zbl 1181.53003
[16] Getzler E., Jones J.: Aalgebras and the cyclic bar complex. Illinois J. Math. 34, 256–283 (1990) · Zbl 0701.55009
[17] Givental A.B.: Twisted Picard–Lefschetz formulas. Funct. Anal. Appl. 22, 10–18 (1988) · Zbl 0665.32011 · doi:10.1007/BF01077718
[18] Hutchings M.: Floer homology of families. I. Algebr. Geom. Topol. 8, 435–492 (2008) · Zbl 1170.57025
[19] Katz E.: An algebraic formulation of symplectic field theory. J. Symplectic Geom. 5, 385–437 (2007) · Zbl 1151.14033 · doi:10.4310/JSG.2007.v5.n4.a2
[20] Keller B.: Introduction to A-infinity algebras and modules. Homology Homotopy Appl. 3, 1–35 (2001) · Zbl 0989.18009
[21] Khovanov M., Seidel P.: Quivers, Floer cohomology, and braid group actions. J. Amer. Math. Soc. 15, 203–271 (2002) · Zbl 1035.53122 · doi:10.1090/S0894-0347-01-00374-5
[22] Kimura T., StasheffJ. Voronov A.: On operad structures of moduli spaces and string theory. Comm. Math. Phys. 171, 1–25 (1995) · Zbl 0844.57039 · doi:10.1007/BF02103769
[23] M. Kontsevich, Homological algebra of mirror symmetry, in ”Proceedings of the International Congress of Mathematicians (Zürich, 1994)”, Birkhäuser (1995), 120–139. · Zbl 0846.53021
[24] T. Kragh, The Viterbo transfer as a map of spectra, preprint (2007); arXiv:0712.2533
[25] S. Ma’u, K. Wehrheim, C. Woodward, A-infinity functors for Lagrangian correspondences, preprint.
[26] McLean M.: Lefschetz fibrations and symplectic homology. Geom. Topol. 13, 1877–1944 (2009) · Zbl 1170.53070 · doi:10.2140/gt.2009.13.1877
[27] Menichi L.: String topology for spheres. Comment. Math. Helv. 84, 135–157 (2009) · Zbl 1159.55004 · doi:10.4171/CMH/155
[28] Oancea A.: A survey of Floer homology for manifolds with contact type boundary or symplectic homology. Ensaios Mat. 7, 51–91 (2004) · Zbl 1070.53056
[29] Oancea A.: Fibered symplectic cohomology and the Leray-Serre spectral sequence. J. Symplectic Geom. 6, 267–351 (2008) · Zbl 1157.57016 · doi:10.4310/JSG.2008.v6.n3.a3
[30] S. Piunikhin, D. Salamon, M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, in ”Contact and Symplectic Geometry” (C.B. Thomas, ed.), Cambridge Univ. Press (1996), 171–200. · Zbl 0874.53031
[31] Salamon D., Weber J.: Floer homology and the heat flow. Geom. Funct. Anal. 16, 1050–1138 (2006) · Zbl 1118.53056 · doi:10.1007/s00039-006-0577-4
[32] Salamon D., Zehnder E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure Appl. Math. 45, 1303–1360 (1992) · Zbl 0766.58023 · doi:10.1002/cpa.3160451004
[33] Seidel P.: Graded Lagrangian submanifolds. Bull. Soc. Math. France 128, 103–146 (2000) · Zbl 0992.53059
[34] P. Seidel, Fukaya categories and deformations, in ”Proceedings of the International Congress of Mathematicians (Beijing), vol. 2, Higher Ed. Press (2002), 351–360. · Zbl 1014.53052
[35] Seidel P.: A long exact sequence for symplectic Floer cohomology. Topology 42, 1003–1063 (2003) · Zbl 1032.57035 · doi:10.1016/S0040-9383(02)00028-9
[36] P. Seidel, A biased survey of symplectic cohomology, in ”Current Developments in Mathematics (Harvard, 2006)”, Intl. Press (2008), 211–253. · Zbl 1165.57020
[37] P. Seidel, Fukaya Categories and Picard–Lefschetz Theory, European Math. Soc., 2008.
[38] P. Seidel, Suspending Lefschetz fibrations, with an application to local mirror symmetry, Commun. Math. Phys., to appear. · Zbl 1197.14044
[39] P. Seidel, A remark on the symplectic cohomology of cotangent bundles, after Kragh, unpublished note, 2010.
[40] P. Seidel, I. Smith, Localization for involutions in Floer cohomology, preprint (2010); arXiv:1002.2648 · Zbl 1210.53084
[41] Toen B.: The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167, 615–667 (2007) · Zbl 1118.18010 · doi:10.1007/s00222-006-0025-y
[42] C. Viterbo, Functors and computations in Floer homology with applications, Part II, preprint (1996). · Zbl 0954.57015
[43] Viterbo C.: Functors and computations in Floer homology with applications. Part I, Geom. Funct. Anal. 9, 985–1033 (1999) · Zbl 0954.57015 · doi:10.1007/s000390050106
[44] K. Wehrheim, C. Woodward, An exact triangle for fibered Dehn twists, preprint. · Zbl 1380.53100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.