×

The relative singularity category of a non-commutative resolution of singularities. (English) Zbl 1249.14004

The following statement is a consequence of a theorem of Buchweitz and results on idempotent completions of triangulated categories: Let \(X\) be an algebraic variety with isolated Gorenstein singularities \(Z=\text{Sing}(X)=\{x_1,\dots,x_p\}\). Then there is an equivalence of triangulated categories
\[ \left(\frac{D^b(\text{Coh}(X))}{\text{Perf}(X)}\right)^\omega\overset\sim\rightarrow\bigvee_{i=1}^p \underline{\text{MCM}}\left(\hat{\mathcal O}_{X,x_i}\right). \] The left hand side stands for the idempotent completion of the Verdier quotient \(\frac{D^b(\text{Coh}(X))}{\text{Perf}(X)}\), on the right-hand side \(\underline{\text{MCM}}(\hat{\mathcal O}_{X,x_i})\) denotes the stable category of maximal Cohen-Macaulay modules over \(\hat{\mathcal O}_{X,x_i}=:\hat O_i\). The main goal of this article is to generalize this construction as follows. Let \(\mathcal F^\prime\in\text{Coh}(X),\) \(\mathcal F:=\mathcal O\oplus\mathcal F^\prime\) and \(\mathcal A:=\mathcal End_X(\mathcal F)\). Consider the ringed space \(\mathbb X:=(X,\mathcal A)\). It is well known that the functor \(\mathcal F\overset{\mathbb L}\otimes_X-:\text{Perf}(X)\longrightarrow D^b(\text{Coh}(\mathbb X))\) is fully faithful. If \(\text{gl.dim}(\text{Coh}(\mathbb X))<\infty\) then \(\mathbb X\) can be viewed as a non-commutative (or categorical) resolution of singularities of \(X\), and the authors suggest to study the triangulated category \(\Delta_X(\mathbb X):=(\frac{D^b(\text{Coh}(\mathbb X))}{\text{Perf}(X)})^\omega\) called the relative singularity category. Assuming \(\mathcal F\) to be locally free on \(U=X\backslash Z\), an analogue of the “localization equivalence” is proved for the category \(\Delta(\mathbb X)\). In addition, the Grothendieck group \(\Delta(\mathbb X)\) is described.
The main result of the article is a complete description of \(\Delta_U(\mathbb Y)\) in case \(Y\) is an arbitrary curve with nodal singularities and \(\mathcal F^\prime:=\mathcal I_Z\) is the ideal sheaf of the singular locus of \(Y\). It is proved that \(\Delta_Y\) splits into a union of \(p\) blocks: \(\Delta_Y(\mathbb Y)\overset\sim\rightarrow\bigvee_{i=1}^p\Delta_i\), where \(p\) is the number of singular points of \(Y\). Each block is equivalent to the category \(\Delta_{\text{nd}}=\frac{\text{Hot}^b(\text{pro}(A_{nd}))}{\text{Hot}^b(\text{add}(P_\ast))},\) where \(A_{nd}\) is the completed path algebra of the quiver with nodes \(-,\ast,+\) and arrows \(\alpha=(-\ast),\beta=(\ast-),\delta=(\ast+),\gamma=(+\ast)\) and relations \(\delta\alpha=0\), \(\beta\gamma=0\), and \(P_\ast\) is the indecomposable projective \(A_{nd}\)-module corresponding to the vertex \(\ast\). The authors prove that the category \(\Delta_{nd}\) is idempotent complete and \(\text{Hom}\)-finite, and moreover, they give a complete classification of indecomposable objects of \(\Delta_{nd}\). \(\Delta_{nd}\overset\sim\rightarrow(\frac{D^b(\Lambda-\text{mod})}{\text{Band}(\Lambda)})^\omega\) where \(\Lambda\) is the path algebra of the quiver with nodes \(1,2,3\), arrows \(a,c\) from \(1\) to \(2\) and \(b,d\) from \(2\) to \(3\) and relations \(ba=0\), \(dc=0\), and \(\text{Band}(\Lambda)\) is the category of the band objects in \(D^b(\Lambda-\text{mod})\), i.e. the objects which are invariant under the Auslander-Reiten translation in \(D^b(\Lambda-\text{mod})\). Thus the Auslander-Reiten quiver of \(\Delta_{\text{nd}}\) is described.
Let \(\text{P}(X)\) be the essential image of \(\text{Perf}(X)\) under the fully faithful functor \(\mathbb F:=\mathcal F\overset{\mathbb L}\otimes-:\text{Perf}(X)\rightarrow D^b(\text{Coh}(\mathbb X))\). This category is described in the following intrinsic way: \(\text{Ob}(\text{P}(X))=\{\mathcal H^\bullet\in \text{Ob}(D^b(\text{Coh}(\mathbb X)))|\mathcal H^\bullet\in\text{Im}(\text{Hot}^b(\text{add}(\mathcal F_x))\rightarrow D^b(\mathcal A_X-\text{mod}))\}\). In the above notations, the relative singularity category \(\Delta_X(\mathbb X)\) is the idempotent completion of the Verdier quotient \(\text{D}^b(\text{Coh}(\mathbb X))/\text{P}(X)\), and it has a natural structure of triangulated category.
Some of the main results are thus: Let \(D^b_Z(\text{Coh}(\mathbb X))\) be the full subcategory of \(D^b(\text{Coh}(\mathbb X))\) consisting of complexes whose cohomology is supported in \(Z\) and \(\text{P}_Z(X)\cap D^b_Z(\text{Coh}(\mathbb X))\). Then the canonical functor \(\mathbb H:\frac{D^b_Z(\text{Coh}(\mathbb X))}{\text{P}_Z(X)}\rightarrow\frac{D^b(\text{Coh}(\mathbb X))}{\text{P}(X)}\) is fully faithful. With the same notations, the authors prove that the induced functor \(\mathbb H^\omega:(\frac{D^b_Z(\text{Coh}(\mathbb X))}{\text{P}_Z(X)})^\omega\rightarrow(\frac{D^b(\text{Coh}(\mathbb X))}{\text{P}(X)})^\omega \) is an equivalence of triangulated categories.
In addition to much more, the authors answer the questions:
Is the category \(\Delta_Y(\mathbb Y)\) \(\text{Hom}\)-finite? What are the indecomposable objects?
What is the Grothendieck group of \(\Delta_Y(\mathbb Y)\)?
Assume that \(E\) is a plane nodal cubic curve. What is the relation of \(\Delta_E(\mathbb E)\) with the “quiver description” of \(D^b(\text{Coh}(\mathbb E))\)?
To conclude in line with the authors: Let \(Y\) be a nodal algebraic curve, \(Z\) its singular locus, \(\mathcal I=\mathcal I_Z\) and \(\mathbb Y=(Y,\mathcal A)\) for \(\mathcal A=\mathcal End_Y(\mathcal O\oplus I)\). Similarly, let \(O=k[[u,v]]/(uv)\), \(\mathfrak m=(u,v)\) and \(A=\text{End}_O(O\oplus\mathfrak m)\). Then the following results are true:
The category \(\Delta_Y(\mathbb Y)\) splits into a union of \(p\) blocks \(\Delta_{nd}\), where \(p\) is the number of singular points of \(Y\) and \(\Delta_{nd}=\Delta_O(A)\).
The category \(\Delta_{nd}\) is \(\text{Hom}\)-finite and representation discrete. In particular its indecomposable objects and the morphism spaces between them are explicitly known. Moreover, one can compute its Auslander-Reiten quiver.
It is proved that \(K_0(\Delta_{nd})\cong\mathbb Z^2\).
The category \(\Delta_{nd}\) admits an alternative ”quiver description” in terms of representations of a certain gentle algebra \(\Lambda\).
A nontrivial article, not very self contained, but the ideas are easy to follow and very interesting.

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14A22 Noncommutative algebraic geometry
18E30 Derived categories, triangulated categories (MSC2010)

References:

[1] Auslander, M.; Roggenkamp, K., A characterization of orders of finite lattice type, Invent. Math., 17, 79-84 (1972) · Zbl 0248.12012
[2] Balmer, P.; Schlichting, M., Idempotent completion of triangulated categories, J. Algebra, 236, 2, 819-834 (2001) · Zbl 0977.18009
[3] Bobiński, G.; Geiß, C.; Skowroński, A., Classification of discrete derived categories, Cent. Eur. J. Math., 2, 19-49 (2004) · Zbl 1036.18007
[4] Bruns, W.; Herzog, J., Cohen-Macaulay rings, (Cambridge Studies in Advanced Mathematics, vol. 39 (1993), Cambridge University Press) · Zbl 0909.13005
[5] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-Cohomology over Gorenstein rings, Preprint 1987, available at http://hdl.handle.net/1807/16682; R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-Cohomology over Gorenstein rings, Preprint 1987, available at http://hdl.handle.net/1807/16682
[6] Burban, I.; Drozd, Yu., Tilting on non-commutative rational projective curves, Math. Ann., 351, 3, 665-709 (2011) · Zbl 1231.14011
[7] I. Burban, Yu. Drozd, Maximal Cohen-Macaulay modules over non-isolated surface singularities, arXiv:1002.3042; I. Burban, Yu. Drozd, Maximal Cohen-Macaulay modules over non-isolated surface singularities, arXiv:1002.3042 · Zbl 1200.14011
[8] Burban, I.; Drozd, Yu., Derived categories of nodal algebras, J. Algebra, 272, 1, 46-94 (2004) · Zbl 1047.16005
[9] Chen, X.-W., Relative singularity categories and Gorenstein-projective modules, Math. Nachr., 284, 2-3, 199-212 (2011) · Zbl 1244.18014
[10] Chen, X.-W., Unifying two results of Orlov on singularity categories, Abh. Math. Semin. Univ. Hamburg, 80, 2, 207-212 (2010) · Zbl 1214.18013
[11] Curtis, C.; Reiner, I., Methods of representation theory. Vol. I. With applications to finite groups and orders, (Pure and Applied Mathematics (1981), A Wiley-Interscience Publication) · Zbl 0469.20001
[12] Geiß, C.; Reiten, I., Gentle algebras are Gorenstein, Representations of algebras and related topics, Fields Inst. Commun., 45, 129-133 (2005) · Zbl 1148.16301
[13] Happel, D., Triangulated categories in the representation theory of finite-dimensional algebras, (LMS Lecture Note Series, vol. 119 (1988), Cambridge University Press) · Zbl 0635.16017
[14] Humphreys, J., Representations of semisimple Lie algebras in the BGG category \(O\), (Graduate Studies in Mathematics, vol. 94 (2008), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1177.17001
[15] M. Kalck, D. Yang, DG-models for algebraic triangulated categories I: Knörrer’s periodicity revisited, arXiv:1205.1008; M. Kalck, D. Yang, DG-models for algebraic triangulated categories I: Knörrer’s periodicity revisited, arXiv:1205.1008
[16] Kashiwara, M.; Schapira, P., Sheaves on Manifolds, vol. 292 (1990), Springer · Zbl 0709.18001
[17] Keller, B.; Murfet, D.; Van den Bergh, M., On two examples by Iyama and Yoshino, Compos. Math., 147, 2, 591-612 (2011) · Zbl 1264.13016
[18] Kuznetsov, A., Lefschetz decompositions and categorical resolutions of singularities, Selecta Math., 13, 4, 661-696 (2008) · Zbl 1156.18006
[19] Lunts, V., Categorical resolution of singularities, J. Algebra, 323, 10, 2977-3003 (2010) · Zbl 1202.18006
[20] McConnell, J.; Robson, J., Noncommutative Noetherian rings. With the cooperation of L. W. Small, (Graduate Studies in Mathematics, vol. 30 (2001), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0644.16008
[21] Miyachi, J., Localization of triangulated categories and derived categories, J. Algebra, 141, 463-483 (1991) · Zbl 0739.18006
[22] Orlov, D., Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math., 226, 1, 206-217 (2011) · Zbl 1216.18012
[23] Schlichting, M., Negative \(K\)-theory of derived categories, Math. Z., 253, 1, 97-134 (2006) · Zbl 1090.19002
[24] L. Thanhoffer de Völcsey, M. Van den Bergh, Explicit models for some stable categories of maximal Cohen-Macaulay modules, arXiv:1006.2021; L. Thanhoffer de Völcsey, M. Van den Bergh, Explicit models for some stable categories of maximal Cohen-Macaulay modules, arXiv:1006.2021 · Zbl 1362.16021
[25] Thomason, R., The classification of triangulated subcategories, Compos. Math., 105, 1, 1-27 (1997) · Zbl 0873.18003
[26] Thomason, R.; Trobaugh, T., Higher algebraic \(K\)-theory of schemes and of derived categories, (The Grothendieck Festschrift, Vol. III. The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88 (1990), Birkhäuser), 247-435
[27] Van den Bergh, M., Three-dimensional flops and noncommutative rings, Duke Math. J., 122, 3, 423-455 (2004) · Zbl 1074.14013
[28] Verdier, J. L., (Des Catégories Dérivées des Catégories Abéliennes. Des Catégories Dérivées des Catégories Abéliennes, Astérisque, vol. 239 (1996), Société Mathématique de France: Société Mathématique de France Marseilles) · Zbl 0882.18010
[29] Vossieck, D., The algebras with discrete derived category, J. Algebra, 243, 1, 168-176 (2001) · Zbl 1038.16010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.