×

Short memory fractional differential equations for new memristor and neural network design. (English) Zbl 1516.34022


MSC:

34A08 Fractional ordinary differential equations
68T07 Artificial neural networks and deep learning
Full Text: DOI

References:

[1] Ramirez, LE; Coimbra, CF, A variable order constitutive relation for viscoelasticity, Annalen Der Physik, 16, 543-552 (2007) · Zbl 1159.74008
[2] Zhou, H.; Wang, C.; Duan, Z.; Zhang, M.; Liu, J., Time-based fractional derivative approach to creep constitutive model of salt rock, Sci. Sin. Phys. Mech. Astron., 42, 310-318 (2012)
[3] Pu, YF; Wang, WX; Zhou, JL; Wang, YY; Jia, HD, Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation, Sci. Chin. Ser. F., 51, 1319-1339 (2008) · Zbl 1147.68814
[4] Zhang, X.; Wei, C.; Liu, Y.; Luo, M., Fractional corresponding operator in quantum mechanics and applications: a uniform fractional Schr \(\ddot{o}\) dinger equation in form and fractional quantization methods, Ann. Phys., 350, 124-136 (2014) · Zbl 1344.35119
[5] Sánchez, CE; Vega-Jorquera, P., Modelling temporal decay of aftershocks by a solution of the fractional reactive equation, Appl. Math. Comput., 340, 43-49 (2019) · Zbl 1428.86019
[6] Machado, JAT, Fractional order description of DNA, Appl. Math. Model., 39, 4095-4102 (2015) · Zbl 1443.92142
[7] De Staelen, RH; Hendy, AS, Numerically pricing double barrier options in a time-fractional Black-Scholes model, Comput. Math. Appl., 74, 1166-1175 (2017) · Zbl 1415.91315
[8] Benchohra, M.; Henderson, J.; Ntouyas, SK; Ouahab, A., Existence results for fractional order functional differential equations with infinite delay, J. Math. Appl. Anal., 338, 1340-1350 (2008) · Zbl 1209.34096
[9] Feckan, M.; Zhou, Y.; Wang, JR, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17, 3050-3060 (2012) · Zbl 1252.35277
[10] Huang, L.L., Liu, B.Q., Baleanu, D., Wu, G.C.: Numerical solutions of interval—valued fractional nonlinear differential equations. Eur. Phys. J. Plus 134, 220 (2019)
[11] Cermak, J.; Nechvatal, L., ON \((q, h)\)-analogue of fractional calculus, J. Nonlinear Math. Phys., 17, 51-68 (2010) · Zbl 1189.26006
[12] Atici, FM; Eloe, PW, Initial value problems in discrete fractional calculus, Proc. Am. Math. Soc., 137, 981-989 (2009) · Zbl 1166.39005
[13] Wu, GC; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, KT, Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique, Nonlinear Anal. Model. Control, 24, 919-936 (2019) · Zbl 1434.39006
[14] Huang, L.L, Park, J.H., Wu, G.C., Mo, Z.W.: Variable-order fractional discrete-time recurrent neural networks. J. Comput. Appl. Math. 370, 11pp, 112633 (2020) · Zbl 1432.39012
[15] Kaslik, E.; Sivasundaram, S., Nonlinear dynamics and chaos in fractional-order neural networks, Neural Netw., 32, 245-256 (2012) · Zbl 1254.34103
[16] Stamova, I., Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays, Nonlinear Dyn., 77, 1251-1260 (2014) · Zbl 1331.93102
[17] Chen, J.; Zeng, Z.; Jiang, P., Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Netw., 51, 1-8 (2014) · Zbl 1306.34006
[18] Zhang, S.; Yu, Y.; Wang, H., Mittag-Leffler stability of fractional-order Hopfield neural networks, Nonlinear Anal. Hybrid Syst., 16, 204-221 (2015)
[19] Bao, H.; Park, J.; Cao, J., Adaptive synchronization of fractional-order memristor-based neural networks with time delay, Nonlinear Dyn., 82, 1343-1354 (2015) · Zbl 1348.93159
[20] Chen, L.; Wu, R.; Cao, J., Stability and synchronization of memristor-based fractional-order delayed neural networks, Neural Netw., 71, 37-44 (2015) · Zbl 1398.34096
[21] Feckan, M.; Wang, JR, Periodic impulsive fractional differential equations, Adv. Nonlinear Anal., 8, 482-496 (2019) · Zbl 1418.34010
[22] Wu, GC; Zeng, DQ; Baleanu, D., Fractional impulsive differential equations: exact solutions, integral equations and short memory case, Fract. Calc. Appl. Anal., 22, 180-192 (2019) · Zbl 1428.34025
[23] Wu, G.C., Deng, Z.G., Baleanu, D., Zeng, D.Q.: New variable-order fractional chaotic systems for fast image encryption. Chaos 29, 083103 (2019) · Zbl 1420.34028
[24] Baleanu, D.; Wu, GC, Some further results of the Laplace transform for variable-order fractional difference equations, Fract. Calc. Appl. Anal., 22, 1641-1654 (2019) · Zbl 1439.65223
[25] Podlubny, I., Fractional Differential Equation (1999), San Diego: Academic Press, San Diego · Zbl 0893.65051
[26] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory an Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier Science B.V., Amsterdam · Zbl 1092.45003
[27] Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 12pp, 10 (2014) · Zbl 1343.26002
[28] Katugampola, UN, New approach to a generalized fractional integral, Appl. Math. Comput., 218, 860-865 (2011) · Zbl 1231.26008
[29] Zeng, SD; Baleanu, D.; Bai, YR; Wu, GC, Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput., 315, 549-554 (2017) · Zbl 1426.65097
[30] Almeida, R., Caputo-Hadamard fractional derivatives of variable order, Numer. Funct. Anal. Optim., 38, 1-19 (2017) · Zbl 1364.26006
[31] Garra, R., Orsingher, E., Polito F.: A note on Hadamard fractional differential equations with varying coefficients and their applications in probability. 6, 10pp, 4 (2018) · Zbl 1499.34048
[32] Bastos, NRO; Ferreira, RAC; Torres, DFM, Discrete-time fractional variational problems, Signal Process., 91, 513-524 (2011) · Zbl 1203.94022
[33] Mozyrska, D.; Girejko, E.; Almeida, A.; Castro, L.; Speck, FO, Overview of fractional \(h\)-difference operators, Advances in Harmonic Analysis and Operator Theory. Operator Theory: Advances and Applications (2013), Basel: Birkhäuser, Basel
[34] Deng, W., Short memory principle and a predictor-corrector approach for fractional differential equations, J. Comput. Appl. Math., 206, 174-188 (2007) · Zbl 1121.65128
[35] Wang, Z., Huang, X., Li, Y.X., Song, X.N.: A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system. Chin. Phys. B. 6, 8pp, 010504 (2013)
[36] Liu, F.; Zhuang, P.; Anh, V.; Turner, I.; Burrage, K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191, 12-20 (2007) · Zbl 1193.76093
[37] Kolwankar, KM; Gangal, AD, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 6, 505-513 (1996) · Zbl 1055.26504
[38] Yang, XJ, Advanced Local Fractional Calculus and Its Applications (2012), Singapore: World Science Publisher, Singapore
[39] Sun, HG; Chen, W.; Chen, YQ, Variable-order fractional differential operators in anomalous diffusion modeling, Phys. A, 388, 4586-4592 (2009)
[40] Samko, SG; Ross, B., Integration and differentiation to a variable fractional order, Integr. Transf. Spec. F, 27, 277-300 (1993) · Zbl 0820.26003
[41] Lorenzo, CF; Hartley, TT, Variable-order and distributed order fractional operators, Nonlinear Dyn., 29, 57-98 (2002) · Zbl 1018.93007
[42] Coimbra, CFM, Mechanics with variable-order differential operators, Annalen Der Physik, 12, 692-703 (2003) · Zbl 1103.26301
[43] Lin, R.; Liu, F.; Anh, V.; Turner, I., Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212, 435-445 (2009) · Zbl 1171.65101
[44] Chen, CM; Liu, F.; Anh, V.; Turner, I., Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32, 1740-1760 (2010) · Zbl 1217.26011
[45] Valerio, D.; da Costa, JS, Variable-order fractional derivatives and their numerical approximations, Signal Process., 91, 470-483 (2011) · Zbl 1203.94060
[46] Ortigueira, MD; Valrio, D.; Machado, JT, Variable order fractional systems, Commun. Nonlinear Sci. Numer. Simul., 71, 231-243 (2019) · Zbl 1464.26007
[47] Li, Y.; Chen, YQ; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59, 1810-1821 (2010) · Zbl 1189.34015
[48] Chua, L., Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18, 507-519 (1971)
[49] Petras, I., Fractional-order memristor-based Chua’s circuit, IEEE Trans. Circuits Syst. II Express Br., 57, 975-979 (2010)
[50] Wu, GC; Baleanu, D., Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps, Commun. Nonlinear Numer. Simul., 22, 95-100 (2015) · Zbl 1329.65309
[51] Chidouh, A.; Guezane-Lakoud, A.; Bebbouchi, R., Positive solutions of the fractional relaxation equation using lower and upper solutions, Vietnam J. Math., 44, 739-748 (2016) · Zbl 1358.34009
[52] Diethelm, K.; Ford, NJ; Freed, AD, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29, 3-22 (2002) · Zbl 1009.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.