×

Modelling temporal decay of aftershocks by a solution of the fractional reactive equation. (English) Zbl 1428.86019

Summary: We propose a new analytical perspective to explain the behavior of the number of seismic events observed post an intense earthquake as time elapses, through the application of a fractional solution of the reactive equation. According to the results obtained, a double power law model shows the number density decay in several possible ways, among which is a particular case the modified version of Omori Law proposed by T. Utsu [“A statistical study of the occurrence of aftershocks”, Geophys. Mag. 30, 521–605 (1961)].

MSC:

86A15 Seismology (including tsunami modeling), earthquakes
33E12 Mittag-Leffler functions and generalizations
86A32 Geostatistics
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Guglielmi, A. V., Interpretation of the Omori law, Izv., Phys. Solid Earth, 52, 785-786 (2016)
[2] El-Misiery, A. E.M.; Ahmed, E., On a fractional model for earthquakes, Appl. Math. Comput., 178, 207-211 (2006) · Zbl 1130.86309
[3] Enescu, B.; Mori, J.; Miyazawa, M.; Kano, Y., Omori-utsu law c-values associated with recent moderate earthquakes in japan, Bull. Seismological Soc. Am., 99, 884-891 (2009)
[4] Bogdan, E.; Kiyoshi, I., Spatial analysis of the frequency-magnitude distribution and decay rate of aftershock activity of the 2000 western tottori earthquake, Earth Planets Space, 54, 847-859 (2002)
[5] Utsu, T.; Ogata, O.; Matsu’ura, R. S., The centenary of the omori formula for a decay law of aftershock activity, J. Phys. Earth, 43, 1-33 (1995)
[6] Lolli, B.; Gasperini, P., Comparing different models of aftershock rate decay: the role of catalog incompleteness in the first times after main shock, Tectonophysics, 423, 43-59 (2006)
[7] Koh, C. G.; Kelly, J. M., Application of fractional derivatives to seismic analysis of base-isolated models, Earthq. Eng. Struct. Dyn., 19, 229-241 (1990)
[8] Mathai, A. M.; Saxena, R. K.; Haubold, H. J., A certain class of laplace transforms with applications to reaction and reaction-diffusion equations, Astrophys. Space Sci., 305, 283-288 (2006) · Zbl 1105.35301
[9] Mathai, A. M.; Haubold, H. J., Pathway model, superstatistics, tsallis’ statistics and a generalized measure of entropies, Phys. A, 375, 110-122 (2007)
[10] Mignan, A., Modeling aftershocks as a stretched exponential relaxation, Geophys. Res. Lett., 42, 9726-9732 (2015)
[11] Omori, F., On the aftershocks of earthquakes, J. Coll. Sci., Imp. Univ. Tokyo, 7, 111-200 (1894)
[12] Shaw, B. E., Generalized omori law for aftershocks and foreshocks from a simple dynamics, Geophys. Res. Lett., 20, 907-910 (1993)
[13] Utsu, T., A statistical study of the occurrence of aftershocks, Geophys. Mag., 30, 521-605 (1961)
[14] Haubold, H. J.; Mathai, A. M.; Saxena, R. K., Mittag-leffler functions and their applications, J. Appl. Math., ID298628, 1-51 (2011) · Zbl 1218.33021
[15] Lopes, A. M.; Machado, J. A.T.; Pinto, C. M.A.; Galhano, A. M.S. F., Fractional dynamics and MDS visualization of earthquake phenomena, Comput. Math. Appl., 66, 647-658 (2013)
[16] Agarwal, P.; Chand, M.; Singh, G., Certain fractional kinetic equations involving the product of generalized k-bessel function, Alex. Eng. J., 55, 3053-3059 (2016)
[17] Nisar, K. S.; Belgacem, F. B.M., Dynamic k-struve sumudu solutions for fractional kinetic equations, Adv. Differ. Eq., 340, 11 (2017) · Zbl 1444.35153
[18] Dutta, B. K.; Arora, L. K.; Borah, J., On the solution of fractional kinetic equation, Gen. Math. Notes, 6, 40-48 (2011)
[19] Saxena, R.; Mathai, A.; Haubold, H., Unified fractional kinetic equation and a fractional diffusion equation, Astrophys. Space Sci., 290, 299-310 (2004)
[20] Chaurasia, V. B.L.; Kumar, D., On the solutions of generalized fractional kinetic equations, Adv. Stud. Theor. Phys., 4, 773-780 (2010) · Zbl 1227.82055
[21] Oldham, K. B.; Spanier, J., Fractional derivatives and integrals: Definitions and equivalences, (Oldham, K. B.; Spanier, J., The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order (2002), Dover Publications: Dover Publications Inc. Mineola, New York), 45-60
[22] Gómez, J. F.; Baleanu, D., Solutions of the telegraph equations using a fractional calculus approach, Proc. Romanian Acad. A, 15, 27-34 (2014)
[23] Gómez, J. F.; Rosales, J.; Razo, J. R.; Guía, M., Fractional RC and LC electrical circuits, Ing. Inv. Y Tec, 15, 311-319 (2014)
[24] Prabhakar, T. R., A singular integral equation with a generalized mittag-leffler function in the kernel, Yokohama Math. J., 19, 7-15 (1971) · Zbl 0221.45003
[25] Mittag-Leffler, G. M., Sur la nouvelle fonction \(e_α}(x)\), C. R. Acad. Sci. Paris, 137, 554-558 (1903) · JFM 34.0435.01
[26] Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y., A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlin. Sci. Num. Simul., 64, 213-231 (2018) · Zbl 1509.26005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.