×

Fractional impulsive differential equations: exact solutions, integral equations and short memory case. (English) Zbl 1428.34025

Summary: Fractional impulsive differential equations are revisited first. Some fundamental solutions of linear cases are given in this study. One straightforward technique without using integral equation is adopted to obtain exact solutions which are given by use of piecewise functions. Furthermore, a class of short memory fractional differential equations is proposed and the variable case is discussed. Mittag-Leffler solutions with impulses are derived which both satisfy the equations and impulsive conditions, respectively.

MSC:

34A08 Fractional ordinary differential equations
34A37 Ordinary differential equations with impulses
34A05 Explicit solutions, first integrals of ordinary differential equations
34A30 Linear ordinary differential equations and systems
Full Text: DOI

References:

[1] R. Agarwal, S. Hristova, D. O’Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations. Fract. Calc. Appl. Anal. 19 (2016), 290-318; ; .; Agarwal, R.; Hristova, S.; O’Regan, D., A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19, 290-318 (2016) · Zbl 1343.34006 · doi:10.1515/fca-2016-0017
[2] R. Agarwal, S. Hristova, D. O’Regan, Non-instantaneous impulses in Caputo fractional differential equations. Fract. Calc. Appl. Anal. 20 (2017), 595-622; ; .; Agarwal, R.; Hristova, S.; O’Regan, D., Non-instantaneous impulses in Caputo fractional differential equations, Fract. Calc. Appl. Anal., 20, 595-622 (2017) · Zbl 1370.34008 · doi:10.1515/fca-2017-0032
[3] R. Agarwal, S. Hristova, D. O’Regan, Some stability properties related to initial time difference for Caputo fractional differential equations. Fract. Calc. Appl. Anal. 21 (2018), 72-93; ; .; Agarwal, R.; Hristova, S.; O’Regan, D., Some stability properties related to initial time difference for Caputo fractional differential equations, Fract. Calc. Appl. Anal., 21, 72-93 (2018) · Zbl 1393.34011 · doi:10.1515/fca-2018-0005
[4] T. Burton, B. Zhang, Fixed points and fractional differetial equations: examples. Fixed Point Theor. 14 (2013), 313-325.; Burton, T.; Zhang, B., Fixed points and fractional differetial equations: examples, Fixed Point Theor., 14, 313-325 (2013) · Zbl 1281.34008
[5] S.K. Choi, N. Koo, A note on linear impulisive fractional differential equations. J. Chun. Math. Soc. 28 (2015), 583-590.; Choi, S. K.; Koo, N., A note on linear impulisive fractional differential equations, J. Chun. Math. Soc., 28, 583-590 (2015)
[6] S.K. Choi, N. Koo, On exact solutions for impulsive differential equations with non-integer orders. J. Chun. Math. Soc. 29 (2016), 515-521.; Choi, S. K.; Koo, N., On exact solutions for impulsive differential equations with non-integer orders, J. Chun. Math. Soc., 29, 515-521 (2016)
[7] K. Diethelm, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29 (2002), 3-22.; Diethelm, K.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29, 3-22 (2002) · Zbl 1009.65049
[8] X. Ding, J. Cao, X. Zhao, F.E. Alsaadi, Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes. Proc. Roy. Soc. A-Math. Phys. Engr. Sci. 473 (2017), Article ID. 20170322.; Ding, X.; Cao, J.; Zhao, X.; Alsaadi, F. E., Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive control schemes, Proc. Roy. Soc. A-Math. Phys. Engr. Sci., 473 (2017) · Zbl 1404.92013
[9] J.S. Duan, Convenient analytic recurrence algorithms for the Adomian polynomials. Appl. Math. Comput. 217 (2011), 6337-6348.; Duan, J. S., Convenient analytic recurrence algorithms for the Adomian polynomials, Appl. Math. Comput., 217, 6337-6348 (2011) · Zbl 1214.65064
[10] M. Feckan, Y. Zhou, J.R. Wang, On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 3050-3060.; Feckan, M.; Zhou, Y.; Wang, J. R., On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 17, 3050-3060 (2012) · Zbl 1252.35277
[11] A. Khaliq, M.U. Rehman, On variational methods to non-instantaneous impulsive fractional differential equation. Appl. Math. Lett. 83 (2018), 95-102.; Khaliq, A.; Rehman, M. U., On variational methods to non-instantaneous impulsive fractional differential equation, Appl. Math. Lett., 83, 95-102 (2018) · Zbl 1489.34017
[12] H.L. Li, Y.L. Jiang, Z.L. Wang, C. Hu, Global stability problem for feedback control systems of impulsive fractional differential equations on networks. Neurocomput. 161 (2015), 155-161.; Li, H. L.; Jiang, Y. L.; Wang, Z. L.; Hu, C., Global stability problem for feedback control systems of impulsive fractional differential equations on networks, Neurocomput., 161, 155-161 (2015)
[13] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, 1999.; Podlubny, I., Fractional Differential Equations. (1999) · Zbl 0924.34008
[14] H.M. Srivastava, S. Abbas, S. Tyagi, D. Lassoued, Global exponential stability of fractional-order impulsive neural network with time-varying and distributed delay. Math. Meth. Appl. Sci. 41 (2018), 2095-2104.; Srivastava, H. M.; Abbas, S.; Tyagi, S.; Lassoued, D., Global exponential stability of fractional-order impulsive neural network with time-varying and distributed delay, Math. Meth. Appl. Sci., 41, 2095-2104 (2018) · Zbl 1391.34130
[15] I. Stamova, G. Stamov, Stability analysis of impulsive functional systems of fractional order. Commun. Nonlinear Sci. Numer. Sim. 19 (2014), 702-709.; Stamova, I.; Stamov, G., Stability analysis of impulsive functional systems of fractional order, Commun. Nonlinear Sci. Numer. Sim., 19, 702-709 (2014) · Zbl 1470.34202
[16] I. Stamova, Mittag-Leffler stability of impulsive differential equations of fractional order. Quart. Appl. Math. 73 (2015), 525-535.; Stamova, I., Mittag-Leffler stability of impulsive differential equations of fractional order, Quart. Appl. Math., 73, 525-535 (2015) · Zbl 1330.34024
[17] F. Wang, Y. Yang, X. Xu, L. Li, Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay. Neural Comput. Appl. 28 (2017), 345-352.; Wang, F.; Yang, Y.; Xu, X.; Li, L., Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay, Neural Comput. Appl., 28, 345-352 (2017)
[18] D. Yang, J. Wang and D. O’Regan, A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order. Appl. Math. Comput. 321 (2018), 654-671.; Yang, D.; Wang, J.; O’Regan, D., A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order, Appl. Math. Comput., 321, 654-671 (2018) · Zbl 1426.34021
[19] X. Zhang, P. Niu, Y. Ma, Y. Wei, G. Li, Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition. Neural Net. 94 (2017), 67-75.; Zhang, X.; Niu, P.; Ma, Y.; Wei, Y.; Li, G., Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition, Neural Net., 94, 67-75 (2017) · Zbl 1437.93101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.