×

Fractional differential equations of Caputo-Katugampola type and numerical solutions. (English) Zbl 1426.65097

Summary: This paper is concerned with a numerical method for solving generalized fractional differential equation of Caputo-Katugampola derivative. A corresponding discretization technique is proposed. Numerical solutions are obtained and convergence of numerical formulae is discussed. The convergence speed arrives at \(O(\mathop{\Delta} T^{1 - \alpha})\). Numerical examples are given to test the accuracy.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A08 Fractional ordinary differential equations
Full Text: DOI

References:

[1] Hristov, J., Approximate solutions to fractional subdiffusion equations, Eur. Phys. J. Spec. Top., 193, 229-243 (2011)
[2] Chen, W.; Sun, H.; Zhang, X.; Korosak, D., Anomalous diffusion modeling by fractal and fractional derivatives, Comput. Math. Appl., 59, 1754-1758 (2010) · Zbl 1189.35355
[3] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47, 1760-1781 (2009) · Zbl 1204.26013
[4] Zeng, F. H.; Li, C. P.; Liu, F.; Turner, I., The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35, 2976-3000 (2013) · Zbl 1292.65096
[5] Li, C. P.; Zeng, F. H., Numerical Methods for Fractional Calculus (2015), CRC Press: CRC Press New York · Zbl 1326.65033
[6] Huang, L. L.; Baleanu, D.; Wu, G. C.; Zeng, S. D., A new application of the fractional logistic map, Rom. J. Phys., 61, 1172-1179 (2016)
[7] Zhao, X.; Sun, Z. Z.; Hao, Z. P., A fourth-order compact ADI scheme for 2D nonlinear space fractional Schrodinger equation, SIAM J. Sci. Comput., 36, 2865-2886 (2014) · Zbl 1328.65187
[8] Machado, J. A.T., And i say to myself: “what a fractional world!”, Frac. Calc. Appl. Anal., 14, 4, 635-654 (2011) · Zbl 1273.37002
[9] Evans, R. M.; Katugampola, U. N.; Edwards, D. A., Applications of fractional calculus in solving Abel-type integral equations: surface-volume reaction problem, Comput. Math. Appl., 73, 6, 1346-1362 (2017) · Zbl 1409.65114
[10] Wu, G. C.; Baleanu, D.; Deng, Z. G.; Zeng, S. D., Lattice fractional diffusion equation in terms of a Riesz-Ccaputo difference, Physica A, 438, 335-339 (2015) · Zbl 1400.60130
[11] Wang, J. R.; Li, X. Z., Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., 258, 72-83 (2015) · Zbl 1338.39047
[12] Wang, J. R.; Zhang, Y. R., On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives, Appl. Math. Lett., 39, 85-90 (2015) · Zbl 1319.34017
[13] Baleanu, D.; Garra, R.; Petras, I., A fractional variational approach to the fractional Basset-type equation, Rep. Math. Phys., 72, 57-64 (2013)
[14] Lupulescu, V., Fractional calculus for interval-valued functions, Fuzzy Sets Syst., 265, 63-85 (2015) · Zbl 1361.26001
[15] Sun, H.; Chen, W.; Li, C. P.; Chen, Y., Finite difference schemes for variable-order time fractional diffusion equation, Int. J. Bifurcation Chaos, 22 (2012) · Zbl 1258.65079
[16] Akkurt, A.; Kacar, Z.; Yildirim, H., Generalized fractional integral inequalities for continuous random variables, J. Probab. Stat., 2015 (2015) · Zbl 1426.60022
[17] Ozdemir, M. E.; Avci, M.; Kavurmaci, H., Hermite-Hadamard-type inequalities via (α, m)-convexity, Comput. Math. Appl., 61, 9, 2614-2620 (2011) · Zbl 1221.26032
[18] Tseng, K.; Hwang, S.; Dragomir, S. S., New Hermit-Hadamard-type inequalities for convex functions (I), Appl. Math. Lett., 25, 6, 1005-1009 (2012) · Zbl 1243.26013
[19] Yildirim, H.; Kirtay, Z., Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat., 2, 3, 322-329 (2014) · Zbl 1371.26041
[20] Sarikaya, M. Z.; Dahmani, Z.; Kiris, M. E.; Ahmad, F., (k, s)-Riemann-Liouville fractional integral and applications, Hacettepe J. Math. Stat., 45, 1, 77-89 (2016) · Zbl 1347.26025
[21] Chen, H.; Katugampola, U. N., Hermite-Hadamard and Hermite-Hadamard-Fejr type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446, 1274-1291 (2017) · Zbl 1351.26011
[23] Almeida, R., Variational problems involving a Caputo-type fractional derivative, J. Optim. Theor. Appl., 1-19 (2016)
[24] Almeida, R.; Bastos, N., An approximation formula for the Katugampola integral, J. Math. Anal., 7, 1, 23-30 (2016) · Zbl 1362.26004
[25] Thaiprayoon, C.; Ntouyas, S. K.; Tariboon, J., On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation, Adv. Differ. Equations, 2015, 374 (2015) · Zbl 1422.34064
[26] Almeida, R.; Malinowska, A. B.; Odzijewicz, T., Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dyn., 11, 6 (2016)
[27] Katugampola, U. N., Mellin transforms of the generalized fractional integrals and derivatives, Appl. Math. Comput., 257, 566-580 (2015) · Zbl 1338.44007
[28] Katugampola, U. N., New approach to a generalized fractional integral, Appl. Math. Comput., 218, 860-865 (2011) · Zbl 1231.26008
[29] Katugampola, U. N., A new approach to generalized fractional derivative, Bull. Math. Anal. Appl., 6, 4, 1-15 (2014) · Zbl 1317.26008
[31] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[32] Kilbas, A. A.; Srivastava, H. H.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.