×

A three-step defect-correction algorithm for incompressible flows with friction boundary conditions. (English) Zbl 1513.76070

Summary: Based on finite element discretization and a recent variational multiscale-stabilized method, we propose a three-step defect-correction algorithm for solving the stationary incompressible Navier-Stokes equations with large Reynolds numbers, where nonlinear slip boundary conditions of friction type are considered. This proposed algorithm consists of solving one nonlinear Navier-Stokes type variational inequality problem on a coarse grid in a defect step, and solving two stabilized and linearized Navier-Stokes type variational inequality problems which have the same stiffness matrices with only different right-hand sides on a fine grid in correction steps. In the defect step, an artificial viscosity term is used as a stabilizing factor, making the nonlinear system easier to solve. Error bounds of the approximate solutions in \(L^2\) norms for the velocity gradient and pressure are estimated. Scalings of the algorithmic parameters are derived. Some numerical results are given to support the theoretical predictions and test the validity of the present algorithm.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

FreeFem++
Full Text: DOI

References:

[1] Fujita, H., Flow Problems with Unilateral Boundary Conditions (1993), Collège de France: Lecons, Collège de France
[2] Fujita, H., Kawarada, H.: Variational inequalities for the Stokes equation with boundary conditions of friction type. Recent Dev. Domain Decompos. Methods Flow Probl. 11, 15-33 (1998) · Zbl 0926.76092
[3] Fujita, H., A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions, RIMS Kokyuroku, 888, 199-216 (1994) · Zbl 0939.76527
[4] Fujita, H., Non-stationary Stokes flows under leak boundary conditions of friction type, J. Comput. Math., 19, 1-8 (2001) · Zbl 0993.76014
[5] Fujita, H., A coherent analysis of Stokes flows under boundary conditions of friction type, J. Comput. Appl. Math., 149, 57-69 (2002) · Zbl 1058.76023
[6] Li, Y.; Li, KT, Existence of the solution to stationary Navier-Stokes equations with nonlinear slip boundary conditions, J. Math. Anal. Appl., 381, 1-9 (2011) · Zbl 1221.35282
[7] Li, Y.; Li, KT, Global strong solutions of two-dimensional Navier-Stokes equations with nonlinear slip boundary conditions, J. Math. Anal. Appl., 393, 1-13 (2012) · Zbl 1245.35083
[8] Kashiwabara, T., On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type, J. Differ. Equ., 254, 756-778 (2013) · Zbl 1253.35102
[9] Kashiwabara, T., Finite element method for Stokes equations under leak boundary condition of friction type, SIAM J. Numer. Anal., 51, 2448-2469 (2013) · Zbl 1311.76061
[10] Li, Y.; An, R., Semi-discrete stabilized finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions based on regularization procedure, Numer. Math., 117, 1-36 (2011) · Zbl 1432.76164
[11] Li, Y.; An, R., Penalty finite element method for Navier-Stokes equations with nonlinear slip boundary conditions, Int. J. Numer. Methods Fluids, 69, 550-566 (2012)
[12] An, R., Comparisons of Stokes/Oseen/Newton iteration methods for Navier-Stokes equations with friction boundary conditions, Appl. Math. Model., 38, 5535-5544 (2014) · Zbl 1428.76095
[13] Li, Y.; An, R., Two-level variational multiscale finite element methods for Navier-Stokes type variational inequality problem, J. Comput. Appl. Math., 290, 656-669 (2015) · Zbl 1328.76022
[14] Qiu, HL; Mei, LQ; Zhang, YC, Two-grid variational multiscale algorithms for the stationary incompressible Navier-Stokes equations with friction boundary conditions, Numer. Methods Partial Differ. Equ., 33, 546-569 (2017) · Zbl 1457.76058
[15] Jing, FF; Li, J.; Chen, ZX; Zhang, ZH, Numerical analysis of a characteristic stabilized finite element method for the time-dependent Navier-Stokes equations with nonlinear slip boundary conditions, J. Comput. Appl. Math., 320, 43-60 (2017) · Zbl 1415.76455
[16] Zhou, K.R., Shang, Y.Q.: Parallel iterative stabilized finite element algorithms for the Navier-Stokes equations with nonlinear slip boundary conditions. Int. J. Numer. Methods Fluids 93, 1074-1109 (2021)
[17] John, V.: Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes equations-numerical tests and aspects of the implementation. J. Comput. Appl. Math. 147, 287-300 (2002) · Zbl 1021.76028
[18] Axelsson, O.; Layton, W., Defect correction methods for convection dominated, convection diffusion equations, RAIRO J. Numer. Anal., 24, 423-455 (1990) · Zbl 0705.65081
[19] Ervin, VJ; Layton, W.; Maubach, JM, Adaptive defect-correction methods for viscous incompressible flow problems, SIAM J. Numer. Anal., 37, 1165-1185 (2000) · Zbl 1049.76038
[20] Layton, W.; Lee, H.; Peterson, J., A defect-correction method for the incompressible Navier-Stokes equations, Appl. Math. Comput., 129, 1-19 (2002) · Zbl 1074.76033
[21] Wang, K., A new defect correction method for the Navier-Stokes equations at high Reynolds numbers, Appl. Math. Comput., 216, 3252-3264 (2010) · Zbl 1425.35139
[22] Si, ZY, Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier-Stokes problems, Numer. Algor., 59, 271-300 (2012) · Zbl 1432.76084
[23] Shang, YQ, Parallel defect-correction algorithms based on finite element discretization for the Navier-Stokes equations, Comput. Fluids, 79, 200-212 (2013) · Zbl 1284.76097
[24] Huang, P.Z., Feng, X.L., He, Y.N.: Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary Navier-Stokes equations. Appl. Math. Model. 37, 728-741 (2013) · Zbl 1351.76060
[25] Qiu, H.L., Mei, L.Q., Liu, H., Cartwright, S.: A defect-correction stabilized finite element method for Navier-Stokes equations with friction boundary conditions. Appl. Numer. Math. 90, 9-21 (2015) · Zbl 1326.76066
[26] Qiu, HL; Mei, LQ, Two-level defect-correction stabilized finite element method for Navier-Stokes equations with friction boundary conditions, J. Comput. Appl. Math., 280, 80-93 (2015) · Zbl 1309.76131
[27] Liu, A.; Li, Y.; An, R., Two-level defect-correction method for steady Navier-Stokes problem with friction boundary conditions, Adv. Appl. Math. Mech., 8, 932-952 (2016) · Zbl 1488.65640
[28] Xu, JC, A novel two-grid method for semilinaer elliptic equations, SIAM J. Sci. Comput., 15, 231-237 (1994) · Zbl 0795.65077
[29] Xu, JC, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33, 1759-1777 (1996) · Zbl 0860.65119
[30] Layton, W., A two level discretization method for the Navier-Stokes equations, Comput. Math. Appl., 5, 33-38 (1993) · Zbl 0773.76042
[31] Layton, W.; Lee, HK; Peterson, J., Numerical solution of the stationary Navier-Stokes equations using a multilevel finite element method, SIAM J. Sci. Comput., 20, 1-12 (1998) · Zbl 0932.76033
[32] Layton, W.; Lenferink, HWJ, A multilevel mesh independence principle for the Navier-Stokes equations, SIAM J. Numer. Anal., 33, 17-30 (1996) · Zbl 0844.76053
[33] Girault, V.; Lions, JL, Two-grid finite element scheme for the transient Navier-Stokes problem, Math. Model. Numer. Anal., 35, 945-980 (2001) · Zbl 1032.76032
[34] Franca, LP; Nesliturk, A., On a two-level finite elemnt method for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Engrg., 52, 433-453 (2001) · Zbl 1002.76066
[35] He, YN, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41, 1263-1285 (2003) · Zbl 1130.76365
[36] He, Y.N., Wang, A.W.: A simplified two-level method for the steady Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 197, 1568-1576 (2008) · Zbl 1194.76120
[37] Li, Y., Mei, L.Q., Li, Y.Q., Zhao, K.: A two-level variational multiscale method for incompressible flows based on two local Gauss integrations. Numer. Methods Partial Differ. Equ. 29, 1986-2003 (2013) · Zbl 1277.76019
[38] Shang, YQ; Qin, J., A finite element variational multiscale method based on two-grid discretization for the steady incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 300, 182-198 (2016) · Zbl 1423.76276
[39] Zheng, B.; Shang, YQ, A two-level stabilized quadratic equal-order finite element variational multiscale method for incompressible flows, Appl. Math. Comput., 384, 125373 (2020) · Zbl 1508.76073
[40] Layton, W., Lenferink, H.W.J.: A two-level method with backtraking for the Navier-Stokes equations. SIAM J. Numer. Anal. 35, 2035-2054 (1998) · Zbl 0913.76050
[41] Du, GZ; Li, QT; Zhang, YH, A two-grid method with backtracking for the mixed Navier-Stokes/Darcy model, Numer. Methods Partial Differ. Equ., 36, 1601-1610 (2020) · Zbl 07777662
[42] Yang, X.C., Shang, Y.Q., Zheng, B.: A simplified two-level subgrid stabilized method with backtracking technique for incompressible flows at high Reynolds numbers. Numer. Methods Partial Differ. Equ. 37, 2067-2088 (2021) · Zbl 07776060
[43] Dai, XX; Cheng, XL, A two-grid method based on Newton iteration for the Navier-Stokes equations, J. Comput. Appl. Math., 220, 566-573 (2008) · Zbl 1142.76030
[44] Huang, PZ; Feng, XL, Two-level stabilized method based on Newton iteration for the steady Smagorinsky model, Nonlinear Anal. Real World Appl., 14, 1795-1805 (2013) · Zbl 1261.35122
[45] Saumya, B.; Amiya, KP, On three steps two-grid finite element methods for the 2D-transient Navier-Stokes equations, J. Numer. Math., 25, 199-228 (2017) · Zbl 1453.65308
[46] Wang, L.; Li, J.; Huang, PZ, An efficient two-level algorithm for the 2D/3D stationary incompressible magnetohydrodynamics based on the finite element method, Int. Commun. Heat Mass Trans., 98, 183-190 (2018)
[47] Shang, YQ, A new two-level defect-correction method for the steady Navier-Stokes equations, J. Comput. Appl. Math., 381, 113009 (2020) · Zbl 1486.65264
[48] Zheng, HB; Hou, YR; Shi, F.; Song, LN, A finite element variational multiscale method for incompressible flows based on two local Gauss integrations, J. Comput. Phys., 228, 5961-5977 (2009) · Zbl 1168.76028
[49] Adams, R.: Sobolev Spaces. Academaic Press Inc, New York (1975) · Zbl 0314.46030
[50] Li, Y.; Li, KT, Uzawa iteration method for Stokes type variational inequality of the second kind, Acta Math. Appl. Sin. Engl. Ser., 27, 302-315 (2011)
[51] Girault, V.; Raviart, PA, Finite Element Method for Navier-Stokes Equations: Theory and Algorithms (1986), Berlin: Springer, Berlin · Zbl 0585.65077
[52] Hood, P.; Taylor, C., A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. Fluids, 1, 73-100 (1973) · Zbl 0328.76020
[53] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 251-265 (2012) · Zbl 1266.68090
[54] Ghia, U.; Ghia, KN; Shin, CT, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-441 (1982) · Zbl 0511.76031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.