×

Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier-Stokes problems. (English) Zbl 1432.76084

Summary: In this paper, a second order modified method of characteristics defect-correction (SOMMOCDC) mixed finite element method for the time dependent Navier-Stokes problems is presented. In this method, the hyperbolic part (the temporal and advection term) are treated by a second order characteristics tracking scheme, and the non-linear term is linearized at the same time. Then, we solve the equations with an added artificial viscosity term and correct this solution by using the defect-correction technique. The error analysis shows that this method has a good convergence property. In order to show the efficiency of the SOMMOCDC mixed finite element method, we first present some numerical results of an analytical solution problem, which agrees very well with our theoretical results. Then, we give some numerical results of lid-driven cavity flow with the Reynolds number \(Re = 5,000\), \(7,500\) and \(10,000\). From these numerical results, we can see that the schemes can result in good accuracy, which shows that this method is highly efficient.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Allievi, A., Bermejo, R.: Finite element modified method of characteristics for the Navier–Stokes equations. Int. J. Numer. Methods Fluids 32, 439–464 (2000) · Zbl 0955.76048 · doi:10.1002/(SICI)1097-0363(20000229)32:4<439::AID-FLD946>3.0.CO;2-Y
[2] Axelsson, O., Nikolova, M.: Adaptive refinement for convection–diffusion problems based on a defect-correction technique and finite difference method. Computing 5, 81–30 (1997) · Zbl 0876.35009
[3] Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal. 32(2), 404–424 (1995) · Zbl 0823.76044 · doi:10.1137/0732017
[4] Boukir, K., Maday, Y., MéTivet, B.: A high order characteristics method for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 116 211–218 (1994) · Zbl 0824.76060 · doi:10.1016/S0045-7825(94)80025-1
[5] Boukir, K., Maday, Y., MéTivet, B., Razafindrakoto, E.: A higher-order characteristics/finite element method for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids. 25, 1421–1454 (1997) · Zbl 0904.76040 · doi:10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A
[6] Boukir, K., Nitrosso, B., Maury, B.: A characteristics-ALE method for variable domain Navier–Stokes equations. In: Wrobel, L.C., Sarler, B., Brebbia, C.A. (eds.) Computational Modelling of Free and Moving Boundary Problems III, pp. 57–65. Comput. Mech. Publ., Southampton/Boston (1995)
[7] Bruneaua, G., Jouron, C.: An efficient scheme for solving steady incompressible Navier–Stokes equations. J. Comput. Phys. 89(2), 389–413 (1990) · Zbl 0699.76034 · doi:10.1016/0021-9991(90)90149-U
[8] Bruneau, G., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35, 326–348 (2006) · Zbl 1099.76043 · doi:10.1016/j.compfluid.2004.12.004
[9] Buscaglia, G., Dari, E.A.: Implementation of the Lagrange–Galerkin method for the incompressible for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 15, 23–36 (1992) · Zbl 0753.76091 · doi:10.1002/fld.1650150103
[10] Chen, Z.L.: Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems. Comput. Methods Appl. Mech. Eng. 191, 2509–2538 (2002) · Zbl 1028.76024 · doi:10.1016/S0045-7825(01)00411-X
[11] Chen, Z.X., Ewing, R.E., Jiang, Q.Y., Spagnuolo, A.M.: Error analysis for characteristics-based methods for de-generate parabolic problems. IAM J. Numer. Anal. 40(4), 1491–1515 (2002) · Zbl 1024.65091 · doi:10.1137/S003614290037068X
[12] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) · Zbl 0383.65058
[13] Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26(6), 1487–1512 (1989) · Zbl 0693.65062 · doi:10.1137/0726087
[14] Douglas, J. Jr., Pereira, F., Yeh, L.: A locally conservative Eulerian–Lagrangian numerical method and its application to nonlinear transport in porous media. Comput. Geosci. 4, 1–40 (2000) · Zbl 0969.76069 · doi:10.1023/A:1011551614492
[15] Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominaed diffusion problems based on combing the method of charateristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982) · Zbl 0492.65051 · doi:10.1137/0719063
[16] Erturk, E., Corke, T.C., Gökvöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high reynolds numbers. Int. J. Numer. Methods Fluids. 48, 747–774 (2005) · Zbl 1071.76038 · doi:10.1002/fld.953
[17] Ervin, V., Layton, W.: An analysis of a defect-correction method for a model convection–diffusion equation. SIAM J. Numer. Anal. 26(1), 169–179 (1989) · Zbl 0672.65063 · doi:10.1137/0726010
[18] Ervin, V., Layton, W., Maubach, J.: Adaptive defect correction methods for viscous incompressible flow problems. SIAM J. Numer. Anal. 37, 1165–185 (2000) · Zbl 1049.76038 · doi:10.1137/S0036142997318164
[19] Ewing, R.E., Russell, T.F.: Multistep Galerkin method along characteristics for convection–diffusion problems. In: Vichnevestsky, R., Steoleman, R.S. (eds.) Adv. Comput. Methods P.D.E., pp. 28–36 (1981)
[20] Ervin, V.J., Howell, J.S., Lee, H.: A two-parameter defect-correction method for computation of steady-state viscoelastic fluid flow. Appl. Math. Comput. 196, 818–834 (2008) · Zbl 1132.76033 · doi:10.1016/j.amc.2007.07.014
[21] Frank, R., Hertling, J., Monnet, J.P.: The application of iterated defect correction to variational methods for elliptic boundary value problems. Computing 30, 121–135 (1983) · Zbl 0498.65051 · doi:10.1007/BF02280783
[22] Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutiong for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982) · Zbl 0511.76031 · doi:10.1016/0021-9991(82)90058-4
[23] Giraldo, F.X.: Lagrange–Galerkin methods on spherical geodesic grids. J. Comput. Phys. 136(1), 197–213 (1997) · Zbl 0909.65066 · doi:10.1006/jcph.1997.5771
[24] Giraldo, F.X.: The Lagrange-Galerkin spectral element method on unstructured quadrilateral grids. J. Comput. Phys. 147(1), 114–146 (1998) · Zbl 0920.65070 · doi:10.1006/jcph.1998.6078
[25] Giraldo, F.X.: Lagrange–Galerkin methods on spherical geodesic grids: the shallow water equations. J. Comput. Phys. 160(1), 336–368 (2000) · Zbl 0977.76045 · doi:10.1006/jcph.2000.6469
[26] Giraldo, F.X., Perot, J.B., Fischer, P.F.: A spectral element semi-Lagrangian (SESL) method for the spherical shallow water equations. J. Comput. Phys. 190(2), 623–650 (2003) · Zbl 1076.76058 · doi:10.1016/S0021-9991(03)00300-0
[27] Girault, V., Raviart, P.A.: Finite Element Method for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1987) · Zbl 0585.65077
[28] Gracia, J.L., O’Riordan, E.: A defect-correction parameter-uniform numerical method for a singularly perturbed convection–diffusion problem in one dimension. Numer. Algorithms 41, 359–385 (2006) · Zbl 1098.65083 · doi:10.1007/s11075-006-9021-y
[29] Hansbo, P.: The characteristic streamline diffusion method for the time-dependent incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 171–186 (1992) · Zbl 0825.76423 · doi:10.1016/0045-7825(92)90039-M
[30] He, Y.N., Sun, W.W.: Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45(2), 837–869 (2007) · Zbl 1145.35318 · doi:10.1137/050639910
[31] He, Y.N., Li, J.: Convergence of three iterative methods based on the finite element discretization for the stationary Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 1351–1359 (2009) · Zbl 1227.76031 · doi:10.1016/j.cma.2008.12.001
[32] He, Y.N., Wang, A.W.: A simplified two-level method for the steady Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 197, 1568–1576 (2008) · Zbl 1194.76120 · doi:10.1016/j.cma.2007.11.032
[33] Heinrichs, W.: Defect correction for convection-dominated flow. SIAM J. Sci. Comput. 17(5), 1082–1091 (1996) · Zbl 0857.76050 · doi:10.1137/S1064827593243736
[34] Kramer, W., Minero, R., Clercx, H.J.H., Mattheij, R.M.M.: A finite volume local defect correction method for solving the transport equation. Comput. Fluids 38, 533–543 (2009) · Zbl 1193.76089 · doi:10.1016/j.compfluid.2008.04.015
[35] Koch, O., Weinmüller, E.B.: Iterated defect correction for the solution of singular initial value problems. SIAM J. Numer. Anal. 38(6), 1784–1799 (2001) · Zbl 0989.65068 · doi:10.1137/S0036142900368095
[36] Labovschii, A.: A defect correction method for the time-dependent Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 25, 1–25 (2009) · Zbl 1394.76087 · doi:10.1002/num.20329
[37] Labovschii, A.: A Defect Correction Method for the Time-Dependent Navier–Stokes Equations, Technical Report, University of Pittsburgh, Pennsylvania (2007) · Zbl 1394.76087
[38] Maday, Y., Patera, A., Rnquist, E.: An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 56(4), 263–292 (1990) · Zbl 0724.76070 · doi:10.1007/BF01063118
[39] Layton, W., Lee, H.K., Peterson, J.: A defect-correction method for the incompressible Navier–Stokes equations. Appl. Math. Comput. 129, 1–19 (2002) · Zbl 1074.76033 · doi:10.1016/S0096-3003(01)00026-1
[40] Li, J., Chen, Z.X.: A new local stabilized non conforming finite element method for the Stokes equations. Computing 82, 157–170 (2008) · Zbl 1155.65101 · doi:10.1007/s00607-008-0001-z
[41] Minero, R., Anthonissen, M.J.H., Mattheij, R.M.M.: A local defect correction technique for time-dependent problems. Numer. Methods Partial Differ. Equ. 23, 128–144 (2006) · Zbl 1084.65082 · doi:10.1002/num.20078
[42] Martin, R., Guillard, H.: A second order defect correction scheme for unsteady problems, Comput. Fluids 25(1), 9–21 (1996) · Zbl 0865.76054
[43] Pironnequ, O.: On the transport–diffusion algorithm and it’s applications to the Navier–Stokes equations. Numer. Math. 38, 309–332 (1982) · Zbl 0505.76100 · doi:10.1007/BF01396435
[44] Russell, T.F.: Time stepping along charactercteristics with incomplete iteration for a Galerkin approximation of miscible displacement in prous media. SIAM J. Numer. Anal. 22(5), 970–1013 (1985) · Zbl 0594.76087 · doi:10.1137/0722059
[45] Sesterhenn, J.: A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes. Comput. Fluids 30, 37–67 (2001) · Zbl 0991.76056 · doi:10.1016/S0045-7930(00)00002-5
[46] Shen, L.H., Zhou, A.H.: A defect correction scheme for finite element eigenvalues with applications to quantum chemistry. SIAM J. Sci. Comput. 28(1), 321–338 (2006) · Zbl 1104.65323 · doi:10.1137/040614013
[47] Stetter, H.J.: The defect correction principle and discretization methods. Numer. Math. 29, 425–443 (1978) · Zbl 0362.65052 · doi:10.1007/BF01432879
[48] Süli, E.: Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math. 53, 459–483 (1998) · Zbl 0637.76024 · doi:10.1007/BF01396329
[49] Venturin, M., Bertelle, R., Russo, M.R.: An accelerated algorithm for Navier–Stokes equations. Simulat. Modell. Pract. Theory 18(2), 217–229 (2010) · doi:10.1016/j.simpat.2009.10.008
[50] Xiu, D.B., Karniadakis, G.E.: A semi-Lagrangian high-order method for Navier–Stokes equations. J. Comput. Phys. 172(2), 658–684 (2001) · Zbl 1028.76026 · doi:10.1006/jcph.2001.6847
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.