×

A simplified two-level subgrid stabilized method with backtracking technique for incompressible flows at high Reynolds numbers. (English) Zbl 07776060

Summary: Based on finite element discretization, a simplified two-level subgrid stabilized method with backtracking technique is proposed for the steady incompressible Navier-Stokes equations at high Reynolds numbers. The method combines the best algorithmic characteristics of the standard two-level method with backtracking technique and subgrid stabilized method. In this method, we first solve a fully nonlinear Navier-Stokes equations with a subgrid stabilized term on a coarse grid, then solve a simplified subgrid stabilized linear problem on a fine grid, and finally solve a linear correction problem on a coarse grid, where the stabilized term is based on an elliptic projection. The theoretical results show that, with suitable scalings of algorithmic parameters, the method can yield an optimal convergence rate of second-order. Two numerical results are given to demonstrate the effectiveness of the method.
{© 2020 Wiley Periodicals LLC}

MSC:

65-XX Numerical analysis
35-XX Partial differential equations
Full Text: DOI

References:

[1] Y. Q.Shang and Y. N.He, Parallel iterative finite element algorithms based on full domain partition for the stationary Navier‐Stokes equations, Appl. Numer. Math.60 (2010), 719-737. · Zbl 1425.76147
[2] Y. N.He and J.Li, Convergence of three iterative methods based on finite element discretization for the stationary Namer‐Stokes equations, Comput. Methods Appl. Mech. Engrg.198 (2009), 1351-1359. · Zbl 1227.76031
[3] B.Zheng and Y. Q.Shang, Parallel iterative stabilized finite element algorithms based on the lowest equal?order elements for the stationary Navier‐Stokes equations, Appl. Math. Comput.357 (2019), 35-56. · Zbl 1428.76110
[4] J. C.Xu, A novel two‐grid method for semilinaer elliptic equations, SIAM J. Sci. Comput.15 (1994), 231-237. · Zbl 0795.65077
[5] J. C.Xu, Two‐grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal.33 (1996), 1759-1777. · Zbl 0860.65119
[6] W.Layton, A two level discretization method for the Navier‐Stokes equations, Comput. Math. Appl.5 (1993), 33-38. · Zbl 0773.76042
[7] W.Layton and H. W. J.Lenferink, A two?level method with backtraking for the Navier‐Stokes equations, SIAM J. Numer. Anal.35 (1998), 2035-2054. · Zbl 0913.76050
[8] W.Layton, H. K.Lee, and J.Peterson, Numerical solution of the stationary Navier‐Stokes equations using a multilevel finite element method, SIAM J. Sci. Comput.20 (1998), 1-12. · Zbl 0932.76033
[9] L. P.Franca and A.Nesliturk, On a two‐level finite elemnt method for the incompressible Navier‐Stokes equations, Int. J. Numer. Methods Engrg.52 (2001), 433-453. · Zbl 1002.76066
[10] Y. N.He and K. T.Li, Two‐level stabilized finite element method for the steady Navier‐Stokes problem, Computing74 (2005), 337-351. · Zbl 1099.65111
[11] Y. N.He and A. W.Wang, A simplified two‐level method for the steady Navier‐Stokes equations, Comput. Methods Appl. Mech. Engrg.197 (2008), 1568-1576. · Zbl 1194.76120
[12] Y. Q.Shang, Y. N.He, and D. W.Kim, A new parallel finite element algorithm for the stationary Navier‐Stokes equations, Finite Elem. Anal. Design47 (2011), 1262-1279.
[13] Y. Q.Shang and J.Qin, A finite element variational multiscale method based on two‐grid discretization for the steady incompressible Navier‐Stokes equations, Comput. Methods Appl. Mech. Engrg.300 (2016), 182-198. · Zbl 1423.76276
[14] Y. Q.Shang and J.Qin, Parallel finite element variational multiscale algorithms for incompressible flow at high Reyonds numbers, Appl. Numer. Math.117 (2017), 1-21. · Zbl 1462.65198
[15] Y. Q.Shang, A three‐step Oseen correction method for the steady Navier‐Stokes equations, J. Engrg. Math.111 (2018), 145-163. · Zbl 1400.76043
[16] X. C.Yang and Y. Q.Shang, A two‐level finite element method with backtracking technique for the Navier‐Stokes equations at high Reynolds numbers (in Chinese), Sci. Sin. Math.49 (2019), 815-830. · Zbl 1499.65688
[17] Y. N.He, Two‐level method based on finite element and Crank‐Nicolson extrapolation for the time?dependent Navier‐Stokes equations, SIAM J. Numer. Anal.41 (2003), 1263-1285. · Zbl 1130.76365
[18] Y. N.He and K. M.Liu, Multi‐level spectral Galerkin method for the Navier‐Stokes equations, I: time discretization, Adv. Comput. Math.25 (2006), 403-433. · Zbl 1331.65146
[19] Y. N.He, K. M.Liu, and W. W.Sun, Multi‐level spectral Galerkin method for the Navier‐Stokes equations II: spatial discretization, Numer. Math.101 (2005), 501-522. · Zbl 1096.65099
[20] Q. F.Liu, Y. R.Hou, and Q.Liu, A two‐level method in time and space for solving the Navier‐Stokes equations based on Newton iteration, Comput. Math. Appl.64 (2012), 3569-3579. · Zbl 1268.76016
[21] V.Girault and J. L.Lions, Two‐grid finite element scheme for the transient Navier‐Stokes problem, Math. Model. Numer. Anal.35 (2001), 945-980. · Zbl 1032.76032
[22] Y.Zhang and Y. N.He, Assessment of subgrid‐scale models for the incompressible Navier‐Stokes equations, J. Comput. Appl. Math.234 (2010), 593-604. · Zbl 1273.76082
[23] Y. Q.Shang, A two‐level subgrid stabilized Oseen iterative method for the steady Navier‐Stokes equations, J. Comput. Phys.233 (2013), 210-226. · Zbl 1286.76035
[24] Y. Q.Shang, A parallel subgrid stabilized finite element method based on fully overlapping domain decomposition for the Navier‐Stokes equations, J. Math. Anal. Appl.403 (2013), 667-679. · Zbl 1426.76305
[25] Y. Q.Shang and S. M.Huang, A parallel subgrid stabilized finite element method based on two‐grid discretization for simulation of 2D/3D steady incompressible flows, J. Sci. Comput.60 (2014), 564-583. · Zbl 1299.76150
[26] R.Adams, Sobolev Spaces, Academaic Press Inc, New York, 1975. · Zbl 0314.46030
[27] V.Girault and P. A.Raviart, Finite Element Method for Navier‐Stokes Equations: Theory and Algorithms, Springer‐Verlag, Berlin, Heidelberg, 1987.
[28] V.John et al., Finite Element Methods for Incompressible Flow Problems, Springer International Publishing, Germany, 2016. · Zbl 1358.76003
[29] F.Hecht, New development in Freefem++, J. Numer. Math.20 (2012), 251-265. · Zbl 1266.68090
[30] E.Erturk, T. C.Corke, and C.Gokcol, Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers, Int. J. Numer. Methods Fluids48 (2005), 747-774. · Zbl 1071.76038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.