×

A new two-level defect-correction method for the steady Navier-Stokes equations. (English) Zbl 1486.65264

Summary: A new defect-correction method based on subgrid stabilization for the simulation of steady incompressible Navier-Stokes equations with high Reynolds numbers is proposed and studied. This method uses a two-grid finite element discretization strategy and consists of three steps: in the first step, a small nonlinear coarse mesh system is solved, and then, in the following two steps, two Newton-linearized fine mesh problems which have the same stiffness matrices with only different right-hand sides are solved. The nonlinear coarse mesh system incorporates an artificial viscosity term into the Navier-Stokes system as a stabilizing factor, making the nonlinear system easier to resolve. While the linear fine mesh problems are stabilized by a subgrid model defined by an elliptic projection into lower-order finite element spaces for the velocity. Error bounds of the approximate solutions are estimated. Algorithmic parameter scalings are derived from the analysis. Effectiveness of the proposed method is also illustrated by some numerical results.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

FreeFem++
Full Text: DOI

References:

[1] Layton, W., Solution algorithm for incompressible viscous flows at high Reynolds number, Vestnik Mosk. Gos. Univ. Ser., 15, 25-35 (1996) · Zbl 0915.76050
[2] Layton, W.; Lee, H.; Peterson, J., A defect-correction method for the incompressible Navier-Stokes equations, Appl. Math. Comput., 129, 1-19 (2002) · Zbl 1074.76033
[3] Ervin, V. J.; Layton, W.; Maubach, J. M., Adaptive defect-correction methods for viscous incompressible flow problems, SIAM J. Numer. Anal., 37, 4, 1165-1185 (2000) · Zbl 1049.76038
[4] Kaya, S.; Layton, W.; Riviere, B., Subgrid stabilized defect correction methods for the Navier-Stokes equations, SIAM J. Numer. Anal., 44, 1639-1654 (2006) · Zbl 1124.76029
[5] Liu, Q. F.; Hou, Y. R., A two-level defect-correction method for Navier-Stokes equations, Bull. Aust. Math. Soc., 81, 442-454 (2010) · Zbl 1352.76086
[6] Huang, P. Z.; Feng, X. L.; Su, H. Y., Two-level defect-correction locally stabilized finite element method for the steady Navier-Stokes equations, Nonlinear Anal. Real World Appl., 14, 1171-1181 (2013) · Zbl 1261.35108
[7] Huang, P. Z.; Feng, X. L.; He, Y. N., Two-level defect-correction Oseen iterative stabilized finite element methods for the stationary Navier-Stokes equations, Appl. Math. Model., 37, 728-741 (2013) · Zbl 1351.76060
[8] Qiu, H. L.; Mei, L. Q., Two-level defect-correction stabilized finite element method for Navier-Stokes equations with friction boundary conditions, J. Comput. Appl. Math., 280, 80-93 (2015) · Zbl 1309.76131
[9] Liu, A.; Li, Y.; An, R., Two-level defect-correction method for steady Navier-Stokes problem with friction boundary conditions, Adv. Appl. Math. Mech., 8, 6, 932-952 (2016) · Zbl 1488.65640
[10] Si, Z. Y., Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier-Stokes problems, Numer. Algorithms, 59, 271-300 (2012) · Zbl 1432.76084
[11] Shang, Y. Q., Parallel defect-correction algorithms based on finite element discretization for the Navier-Stokes equations, Comput. & Fluids, 79, 200-212 (2013) · Zbl 1284.76097
[12] Wen, J.; He, Y. N., A new defect-correction method for the stationary Navier-Stokes equations based on pressure projection, Math. Methods Appl. Sci., 41, 1, 250-260 (2018) · Zbl 1383.35143
[13] Kakuba, G.; Mango, J. M.; Anthonissen, M. J.H., Convergence properties of local defect correction algorithm for the boundary element method, CMES Comput. Model. Eng. Sci., 119, 207-225 (2019)
[14] Qiu, H. L.; Mei, L. Q.; Liu, H., A defect-correction stabilized finite element method for Navier-Stokes equations with friction boundary conditions, Appl. Numer. Math., 90, 9-12 (2015) · Zbl 1326.76066
[15] Lee, H. K., Analysis of a defect correction method for viscoelastic fluid flow, Comput. Math. Appl., 48, 1213-1229 (2004) · Zbl 1063.76056
[16] Labovschii, A., A defect correction method for the time-dependent Navier-Stokes equations, Numer. Methods Partial Differential Equations, 25, 1, 1-25 (2009) · Zbl 1394.76087
[17] Si, Z. Y.; He, Y. N.; Wang, K., A defect-correction method for unsteady conduction convection problems I: spatial discretization, Sci. China Math., 54, 1, 185-204 (2011) · Zbl 1227.76040
[18] Si, Z. Y.; He, Y. N.; Zhang, T., A defect-correction method for unsteady conduction convection problems II: Time discretization, J. Comput. Appl. Math., 236, 9, 2553-2573 (2012) · Zbl 1427.76146
[19] Su, H. Y.; Feng, X. L.; He, Y. N., Second order fully discrete defect-correction scheme for nonstationary conduction-convection problem at high Reynolds number, Numer. Methods Partial Differential Equations, 33, 3, 681-703 (2017) · Zbl 1370.65056
[20] Si, Z. Y.; Jing, S. J.; Wang, Y. X., Defect correction finite element method for the stationary incompressible magnetohydrodynamics equation, Appl. Math. Comput., 285, 184-194 (2016) · Zbl 1410.76198
[21] Si, Z. Y.; Liu, C.; Wang, Y. X., A semi-discrete defect correction finite element method for unsteady incompressible magnetohydrodynamics equations, Math. Methods Appl. Sci., 40, 11, 4179-4196 (2017) · Zbl 1368.76016
[22] Yang, Y. D.; Han, J. Y., Multilevel finite element discretizations based on local defect correction for nonsymmetric eigenvalue problems, Comput. Math. Appl., 70, 8, 1799-1816 (2015) · Zbl 1443.65379
[23] Yang, Y. D.; Han, J. Y., The multilevel mixed finite element discretizations based on local defect-correction for the Stokes eigenvalue problem, Comput. Methods Appl. Mech. Engrg., 289, 249-266 (2015) · Zbl 1425.65137
[24] Wang, S. J.; Yang, Y. D.; Bi, H., Multiscale finite element discretizations based on local defect correction for the biharmonic eigenvalue problem of plate buckling, Math. Methods Appl. Sci., 42, 999-1017 (2019) · Zbl 1407.74092
[25] Aggul, M.; Connors, J. M.; Erkmen, D.; Labovsky, A. E., A defect-deferred correction method for fluid-fluid interaction, SIAM J. Numer. Anal., 56, 4, 2484-2512 (2018) · Zbl 06921233
[26] Wang, K., A new defect correction method for the Navier-Stokes equations at high Reynolds numbers, Appl. Math. Comput., 216, 11, 3252-3264 (2010) · Zbl 1425.35139
[27] Shang, Y. Q.; Kim, D. W.; Jo, T. C., On the linearization of defect-correction method for the steady Navier-Stokes equations, J. Korean Math. Soc., 50, 5, 1129-1163 (2013) · Zbl 1274.76260
[28] Xu, J. C., A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15, 231-237 (1994) · Zbl 0795.65077
[29] Xu, J. C., Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33, 5, 1759-1777 (1996) · Zbl 0860.65119
[30] Layton, W., A two level discretization method for the Navier-Stokes equations, Comput. Math. Appl., 5, 26, 33-38 (1993) · Zbl 0773.76042
[31] Layton, W.; Leferink, H. W.J., Two-level picard and modified Picard methods for the Navier-Stokes equations, Appl. Math. Comput., 69, 263-274 (1995) · Zbl 0828.76017
[32] Layton, W.; Lenferink, H. W.J., A multilevel mesh independence principle for the Navier-Stokes equations, SIAM J. Numer. Anal., 33, 1, 17-30 (1996) · Zbl 0844.76053
[33] Layton, W.; Lee, H. K.; Peterson, J., Numerical solution of the stationary Navier-Stokes equations using a multilevel finite element method, SIAM J. Sci. Comput., 20, 1, 1-12 (1998) · Zbl 0932.76033
[34] Layton, W.; Tobiska, L., A two-level method with backtraking for the Navier-Stokes equations, SIAM J. Numer. Anal., 35, 2035-2054 (1998) · Zbl 0913.76050
[35] Girault, V.; Lions, J. L., Two-grid finite element scheme for the steady Navier-Stokes equations in polyhedra, Port. Math., 58, 25-57 (2001) · Zbl 0997.76043
[36] Dai, X. X.; Cheng, X. L., A two-grid method based on Newton iteration for the Navier-Stokes equations, J. Comput. Appl. Math., 220, 566-573 (2008) · Zbl 1142.76030
[37] He, Y. N.; Li, K. T., Two-level stabilized finite element methods for the steady Navier-Stokes problem, Computing, 74, 337-351 (2005) · Zbl 1099.65111
[38] He, Y. N.; Wang, A. W., A simplified two-level method for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 197, 1568-1576 (2008) · Zbl 1194.76120
[39] He, Y. N.; Li, J., Two-level methods based on three correction for the 2D/3D steady Navier-Stokes equations, Int. J. Numer. Anal. Model. Ser. B, 2, 1, 42-56 (2011) · Zbl 1276.76041
[40] He, Y. N.; Zhang, Y.; Shang, Y. Q.; Xu, H., Two-level Newton iterative method for the 2D/3D steady Navier-Stokes equations, Numer. Methods Partial Differential Equations, 28, 5, 1620-1642 (2012) · Zbl 1390.65144
[41] Liu, Q. F.; Hou, Y. R., A two-level finite element method for the Navier-Stokes equations based on a new projection, Appl. Math. Model., 34, 2, 383-399 (2010) · Zbl 1185.76815
[42] Girault, V.; Lions, J. L., Two-grid finite element scheme for the transient Navier-Stokes problem, Math. Model. Numer. Anal., 35, 945-980 (2001) · Zbl 1032.76032
[43] Olshanskii, M. A., Two-level method and some a priori estimates in unsteady Navier-Stokes calculations, J. Comput. Appl. Math., 104, 173-191 (1999) · Zbl 0940.76079
[44] He, Y. N., Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41, 1263-1285 (2003) · Zbl 1130.76365
[45] He, Y. N., A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations, I: Spatial discretization, J. Comput. Math., 22, 21-32 (2004) · Zbl 1137.76412
[46] He, Y. N.; Miao, H. L.; Ren, C. F., A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations, II: Time discretization, J. Comput. Math., 22, 33-54 (2004) · Zbl 1137.76413
[47] He, Y. N.; Liu, K. M., A multi-level finite element method in space-time for the Navier-Stokes equations, Numer. Methods Partial Differential Equations, 21, 1052-1078 (2005) · Zbl 1081.76044
[48] He, Y. N.; Liu, K. M.; Sun, W. W., Multi-level spectral Galerkin method for the Navier- Stokes equations I: spatial discretization, Numer. Math., 101, 501-522 (2005) · Zbl 1096.65099
[49] He, Y. N.; Liu, K. M., Multi-level spectral Galerkin method for the Navier-Stokes equations II: time discretization, Adv. Comput. Math., 25, 403-433 (2006) · Zbl 1331.65146
[50] Hou, Y. R.; Mei, L. Q., Full discrete two-level correction scheme for Navier-Stokes equations, J. Comput. Math., 26, 209-226 (2008) · Zbl 1174.76009
[51] Abboud, H.; Girault, V.; Sayah, T., A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme, Numer. Math., 114, 189-231 (2009) · Zbl 1407.76111
[52] Shang, Y. Q.; Qin, J., A finite element variational multiscale method based on two-grid discretization for the steady incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 300, 182-198 (2016) · Zbl 1423.76276
[53] Shang, Y. Q.; Qin, J., A two-parameter stabilized finite element method for incompressible flows, Numer. Methods Partial Differential Equations, 33, 425-444 (2017) · Zbl 1457.76060
[54] Adams, R., Sobolev Spaces (1975), Academic Press Inc: Academic Press Inc New York · Zbl 0314.46030
[55] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (1984), North-Holland: North-Holland Amsterdam · Zbl 0568.35002
[56] Girault, V.; Raviart, P. A., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms (1986), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 0585.65077
[57] Heywood, J. G.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19, 2, 275-311 (1982) · Zbl 0487.76035
[58] Girault, V.; Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations (1979), Springer-Verlag: Springer-Verlag Berlin · Zbl 0413.65081
[59] Maubach, J., Local bisection refinement for \(n\)-simplicial grids generated by reflection, SIAM J. Sci. Comput., 16, 210-227 (1995) · Zbl 0816.65090
[60] Hood, P.; Taylor, C., A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. & Fluids, 1, 73-100 (1973) · Zbl 0328.76020
[61] Zhang, Y.; He, Y. N., Assessment of subgrid-scale models for the incompressible Navier-Stokes equations, J. Comput. Appl. Math., 234, 593-604 (2010) · Zbl 1273.76082
[62] Hecht, F.; FreeFem++, New.development.in., New development in FreeFem \(+ +\), J. Numer. Math., 20, 3-4, 251-265 (2012) · Zbl 1266.68090
[63] He, Y. N.; Li, J., Convergence of three iterative methods based on finite element discretization for the stationary Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 198, 1351-1359 (2009) · Zbl 1227.76031
[64] Erturk, E.; Corke, T.; Gökcöl, C., Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Internat. J. Numer. Methods Fluids, 48, 747-774 (2005) · Zbl 1071.76038
[65] Ghia, U.; Ghia, K.; Shin, C., High-re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[66] Gartling, D. K., A test problem for outflow boundary conditions-flow over a backward-facing step, Internat. J. Numer. Methods Fluids, 11, 953-967 (1990)
[67] Erturk, E., Numerical solution of 2D steady incompressible flow over a backward-facing step, Part I: Hight Reynolds number solutions, Comput. & Fluids, 37, 633-655 (2008) · Zbl 1237.76102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.