×

Smooth solution of multi-dimensional nonhomogeneous conservation law: its formula, and necessary and sufficient blowup criterion. (English) Zbl 1512.35405

Summary: In this paper, we are concerned with the necessary and sufficient condition of the global existence of smooth solutions of the Cauchy problem of the multi-dimensional scalar conservation law with source-term, where the initial data lies in \(W^{1, \infty}(\mathbb{R}^n) \cap C^1 (\mathbb{R}^n)\). We obtain the solution formula for smooth solution, and then apply it to establish and prove the necessary and sufficient condition for the global existence of smooth solution. Moreover, if the smooth solution blows up at a finite time, the exact lifespan of the smooth solution can be obtained. In particular, when the source term vanishes, the corresponding theorem for the homogeneous case is obtained too. Finally, we give two examples as its applications, one for the global existence of the smooth solution and the other one for the blowup of the smooth solutions at any given positive time.

MSC:

35L65 Hyperbolic conservation laws
35L45 Initial value problems for first-order hyperbolic systems
35L60 First-order nonlinear hyperbolic equations
35L67 Shocks and singularities for hyperbolic equations
Full Text: DOI

References:

[1] Alinhac, S., Un phénomne de concentration évanescente pour des flots non-stationnaires incompressibles en dimension deux [Concentration cancellation for incompressible nonstationary flows in dimension two], Comm. Math. Phys., 127, 3, 585-596 (1990) · Zbl 0695.76018 · doi:10.1007/BF02104503
[2] Alinhac, S., Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions, Annals of Mathematics, 149, 1, 97-127 (1999) · Zbl 1080.35043 · doi:10.2307/121020
[3] Alinhac, S., Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions, ii, Acta Mathematica, 182, 1, 1-23 (1999) · Zbl 0973.35135 · doi:10.1007/BF02392822
[4] Cao, GW; Xiang, W.; Yang, XZ, Global structure of admissible solutions of multi-dimensional non-homogeneous scalar conservation law with Riemann-type data, J. diff. equ., 263, 2, 1055-1078 (2017) · Zbl 1380.35123 · doi:10.1016/j.jde.2017.03.007
[5] Chang, T.; Hsiao, L., The Riemann problem and interaction of waves in gas dynamics, NASA STI/Recon Technical Report A, 90, 44044 (1989) · Zbl 0698.76078
[6] Chen, G.; Chen, GQ; Zhu, SG, Formation of singularities and existence of global continuous solutions for the compressible Euler equations, SIAM Journal on Mathematical Analysis, 53, 6, 6280-6325 (2021) · Zbl 1485.35293 · doi:10.1137/20M1316603
[7] Chen, GQ; Li, D.; Tan, D., Structure of Riemann solutions for 2-dimensional scalar conservation laws, Journal of differential equations, 127, 1, 124-147 (1996) · Zbl 0851.35085 · doi:10.1006/jdeq.1996.0065
[8] Chen, S.X., Xin, Z.P., Yin, H.C. Formation and construction of shock wave for quasilinear hyperbolic system and its application to inviscid compressible flow. The Institute of Mathematical Sciences at CUHK, 2010, Research Reports: 2000-10(069), 1999
[9] Christodoulou, D., Global solutions of nonlinear hyperbolic equations for small initial data, Communications on Pure and Applied Mathematics, 39, 2, 267-282 (1986) · Zbl 0612.35090 · doi:10.1002/cpa.3160390205
[10] Christodoulou, D. The formation of shocks in 3-dimensional fluids: Volume 2. Euro. Math. Soc., 2007 · Zbl 1138.35060
[11] Christodoulou, D., The shock development problem. EMS Monographs in Mathematics (2019), Zürich: European Mathematical Society (EMS), Zürich · Zbl 1445.35003 · doi:10.4171/192
[12] Christodoulou, D.; Miao, S., Compressible flow and Euler’s equations (2014), Somerville, MA: International Press, Somerville, MA · Zbl 1329.76002
[13] Conway, E.; Smoller, J., Uniqueness and stability theorem for the generalized solution of the initial-value problem for a class of quasi-linear equations in several space variables, Archive for Rational Mechanics and Analysis, 23, 5, 399-408 (1967) · Zbl 0157.16701 · doi:10.1007/BF00276782
[14] Holzegel, G.; Klainerman, S.; Speck, J.; Wong, WW, Small-data shock formation in solutions to 3D quasilinear wave equations: an overview, J. Hyperbolic Differential Equation., 13, 1, 1C-105 (2016) · Zbl 1346.35005 · doi:10.1142/S0219891616500016
[15] Hürmander, L. The lifespan of classical solutions of non-linear hyperbolic equations. Pseudo-Differential Operators, 1987: 214-280 · Zbl 0632.35045
[16] John, F., Formation of singularities in one-dimensional nonlinear wave propagation, Communications on Pure and Applied Mathematics, 27, 377-405 (1974) · Zbl 0302.35064 · doi:10.1002/cpa.3160270307
[17] Kruzkov, SN, First order quasilinear equations inseveral independent variables, Sbornik: Mathematics, 10, 2, 217-243 (1970) · Zbl 0215.16203 · doi:10.1070/SM1970v010n02ABEH002156
[18] Lax, PD, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, Journal of Mathematical Physics, 5, 5, 611-613 (1964) · Zbl 0135.15101 · doi:10.1063/1.1704154
[19] Li, TT, Global classical solutions for quasilinear hyperbolic systems (1994), New York: Wiley, New York · Zbl 0841.35064
[20] Li, TT; Zhou, Y.; Kong, DX, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Communications in Partial Differential Equations, 19, 7-8, 1263-1317 (1994) · Zbl 0810.35054
[21] Liu, TP, Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations, Journal of Differential Equations, 33, 1, 92-111 (1979) · Zbl 0379.35048 · doi:10.1016/0022-0396(79)90082-2
[22] Liu, TP, Nonlinear resonance for quasilinear hyperbolic equation, Journal of mathematical physics, 28, 11, 2593-2602 (1987) · Zbl 0662.35068 · doi:10.1063/1.527751
[23] Luk, J.; Speck, J., Shock formation in solutions to the 2d compressible Euler equations in the presence of non-zero vorticity, Inventiones Mathematicae, 214, 1, 1-169 (2018) · Zbl 1409.35142 · doi:10.1007/s00222-018-0799-8
[24] Luk, J.; Speck, J., The hidden null structure of the compressible Euler equations and a prelude to applications, J. Hyperbolic Differential Equation, 17, 1, 1-60 (2020) · Zbl 1441.35190 · doi:10.1142/S0219891620500010
[25] Miao, S.; Yu, P., On the formation of shocks for quasilinear wave equations, Inventiones Mathematicae, 207, 2, 697-831 (2017) · Zbl 1362.35248 · doi:10.1007/s00222-016-0676-2
[26] Shi, B.; Wang, W., Existence and blow up of solutions to the 2D burgers equation with supercritical dissipation, Discrete and Continuous Dynamical Systems-B, 25, 3, 1169-1192 (2020) · Zbl 1430.35001 · doi:10.3934/dcdsb.2019215
[27] Tsuji, M.; Li, TT, Globally classical solutions for nonlinear equations of first order, Communications in partial differential equations, 10, 12, 1451-1463 (1985) · Zbl 0594.35052 · doi:10.1080/03605308508820414
[28] Vol’pert, A., The space BV and quasilinear equations, Maths. USSR Sbornik, 2, 225-267 (1967) · Zbl 0168.07402 · doi:10.1070/SM1967v002n02ABEH002340
[29] Yang, XZ, Multi-Dimensional Riemann problem of scalar conservation law, Acta Mathematica Scientia, 19, 2, 190-200 (1990) · Zbl 0933.35133 · doi:10.1016/S0252-9602(17)30629-X
[30] Yang, XZ; Zhang, T., Global smooth solution of multi-dimensional non-homogeneous conservation laws, Progress in Natural Science, 14, 10, 855-862 (2004) · Zbl 1089.35516 · doi:10.1080/10020070412331344451
[31] Yang, T.; Zhu, CJ; Zhao, HJ, Global smooth solutions for a class of quasilinear hyperbolic systems with dissipative terms, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 127, 6, 1311-1324 (1997) · Zbl 0899.35059 · doi:10.1017/S0308210500027074
[32] Yin, HC, Formation and construction of a shock wave for 3-d compressible Euler equations with the spherical initial data, Nagoya Mathematical Journal, 175, 125-164 (2004) · Zbl 1133.35374 · doi:10.1017/S002776300000893X
[33] Yin, HC; Zhu, L., The shock formation and optimal regularities of the resulting shock curves for 1d scalar conservation laws, Nonlinearity, 35, 2, 954-997 (2022) · Zbl 1481.35276 · doi:10.1088/1361-6544/ac4151
[34] Yin, HC; Zhu, L., Formation and construction of a multidimensional shock wave for the firstorder hyperbolic conservation law with smooth initial data, SIAM J. Mathematical Analysis, 54, 2, 2587-2610 (2022) · Zbl 1487.35251 · doi:10.1137/21M1406581
[35] Zhu, CJ; Zhao, HJ, Existence, uniqueness and stability of solutions for a class of quasilinear wave equations, Chinese Journal of Contemporary Mathematics, 18, 2, 171-184 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.