×

Small-data shock formation in solutions to 3D quasilinear wave equations: an overview. (English) Zbl 1346.35005

The goal of this paper is to present an overview of D. Christodoulou’s results [The formation of shocks in 3-dimensional fluids. Zürich: EMS Publishing House (2007; Zbl 1117.35001)] on shock formations and their more recent extensions for two important classes of quasilinear 3D wave equations.

MSC:

35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
58J45 Hyperbolic equations on manifolds
76L05 Shock waves and blast waves in fluid mechanics
35Q31 Euler equations
35L72 Second-order quasilinear hyperbolic equations

Citations:

Zbl 1117.35001

References:

[1] 1. S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math.145 (2001) 597-618. genRefLink(16, ’S0219891616500016BIB001’, ’10.1007
[2] 2. S. Alinhac, The null condition for quasilinear wave equations in two space dimensions II, Amer. J. Math.123 (2001) 1071-1101. genRefLink(16, ’S0219891616500016BIB002’, ’10.1353
[3] 3. S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Progress in Nonlinear Differential Equations and their Applications, Vol. 17 (Birkhäuser Boston Inc., Boston, 1995). genRefLink(16, ’S0219891616500016BIB003’, ’10.1007 · Zbl 0820.35001
[4] 4. S. Alinhac, Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions II, Acta Math.182 (1999) 1-23. genRefLink(16, ’S0219891616500016BIB004’, ’10.1007
[5] 5. S. Alinhac, Blowup of small data solutions for a quasilinear wave equation in two space dimensions, Ann. Math. (2)149 (1999) 97-127. genRefLink(16, ’S0219891616500016BIB005’, ’10.2307
[6] 6. S. Alinhac, A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations, Journées Equations aux Dérivées Partielleś (Forges-les-Eaux, 2002), Univ. Nantes, 2002, Exp. No. I, 33.
[7] 7. S. Alinhac, An example of blowup at infinity for a quasilinear wave equation, Astérisque284 (2003) 1-91. · Zbl 1053.35097
[8] 8. A. Bressan, Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal. Appl.170 (1992) 414-432. genRefLink(16, ’S0219891616500016BIB008’, ’10.1016
[9] 9. D. Christodoulou and S. Miao, Compressible Flow and Euler’s Equations, Surveys of Modern Mathematics, Vol. 9 (International Press, Somerville, 2014). · Zbl 1329.76002
[10] 10. D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math.39 (1986) 267-282. genRefLink(16, ’S0219891616500016BIB010’, ’10.1002
[11] 11. D. Christodoulou, The Formation of Shocks in 3-Dimensional Fluids, EMS Monographs in Mathematics (EMS, Zürich, 2007). genRefLink(16, ’S0219891616500016BIB011’, ’10.4171 · Zbl 1138.35060
[12] 12. D. Christodoulou, The Formation of Black Holes in General Relativity, EMS Monographs in Mathematics (EMS, Zürich, 2009). genRefLink(16, ’S0219891616500016BIB012’, ’10.4171 · Zbl 1197.83004
[13] 13. D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, Vol. 41 (Princeton University Press, Princeton, 1993). · Zbl 0827.53055
[14] 14. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves (Interscience Publishers, Inc., New York, 1948). · Zbl 0041.11302
[15] 15. C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd edn., Grundlehren der Mathematischen Wissenschaften, Vol. 325 (Springer, Berlin, 2010). genRefLink(16, ’S0219891616500016BIB015’, ’10.1007 · Zbl 1196.35001
[16] 16. K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math.7 (1954) 345-392. genRefLink(16, ’S0219891616500016BIB016’, ’10.1002
[17] 17. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math.18 (1965) 697-715. genRefLink(16, ’S0219891616500016BIB017’, ’10.1002
[18] 18. Y. Guo and A. Shadi Tahvildar-Zadeh, Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics, in Nonlinear Partial Differential Equations (Evanston, IL, 1998), Contemp. Math., Vol. 238 (Amer. Math. Soc., Providence, 1998), pp. 151-161. · Zbl 0973.76100
[19] 19. L. Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations, in Pseudodifferential Operators, Lecture Notes in Mathematics, Vol. 1256 (Springer, Berlin, 1987), pp. 214-280. genRefLink(16, ’S0219891616500016BIB019’, ’10.1007
[20] 20. L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathé-matiques & Applications, Vol. 26 (Springer-Verlag, Berlin, 1997).
[21] 21. F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math.4 (1987) 443-455. · Zbl 0599.35104
[22] 22. F. John, Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math.27 (1974) 377-405. genRefLink(16, ’S0219891616500016BIB022’, ’10.1002
[23] 23. F. John, Delayed singularity formation for solutions of nonlinear partial differential equations in higher dimensions, Proc. Nat. Acad. Sci. USA78 (1976) 281-282. genRefLink(16, ’S0219891616500016BIB023’, ’10.1073 · Zbl 0316.35064
[24] 24. F. John, Delayed singularity formation in solutions of nonlinear wave equations in higher dimensions, Comm. Pure Appl. Math.29 (1976) 649-682. genRefLink(16, ’S0219891616500016BIB024’, ’10.1002
[25] 25. F. John, Blow-up for quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math.34 (1981) 29-51. genRefLink(16, ’S0219891616500016BIB025’, ’10.1002
[26] 26. F. John, Lower bounds for the life span of solutions of nonlinear wave equations in three dimensions, Comm. Pure Appl. Math.36 (1983) 1-35. genRefLink(16, ’S0219891616500016BIB026’, ’10.1002
[27] 27. F. John, Formation of singularities in elastic waves, in Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983), Lecture Notes in Phys., Vol. 195 (Springer, Berlin, 1984), pp. 194-210. genRefLink(16, ’S0219891616500016BIB027’, ’10.1007
[28] 28. F. John, Blow-up of radial solutions of utt=c2(ut){\(\Delta\)}u in three space dimensions, Mat. Apl. Comput.4 (1985) 3-18.
[29] 29. F. John, Existence for large times of strict solutions of nonlinear wave equations in three space dimensions for small initial data, Comm. Pure Appl. Math.40 (1987) 79-109. genRefLink(16, ’S0219891616500016BIB029’, ’10.1002
[30] 30. F. John, Solutions of quasilinear wave equations with small initial data. The third phase, in Nonlinear Hyperbolic Problems (Bordeaux, 1988), Lecture Notes in Math., Vol. 1402 (Springer, Berlin, 1989), pp. 155-184. genRefLink(16, ’S0219891616500016BIB030’, ’10.1007
[31] 31. F. John, Nonlinear Wave Equations, Formation of Singularities, University Lecture Series, Vol. 2 (American Mathematical Society, Providence, 1990). genRefLink(16, ’S0219891616500016BIB031’, ’10.1090
[32] 32. S. Klainerman, On ”almost global” solutions to quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math.36 (1983) 325-344. genRefLink(16, ’S0219891616500016BIB032’, ’10.1002
[33] 33. S. Klainerman, I. Rodnianski and J. Szeftel, The bounded L2 curvature conjecture, To appear in Invent. Math. · Zbl 1330.53089
[34] 34. S. Klainerman, Long time behaviour of solutions to nonlinear wave equations, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (PWN, Warsaw, 1984), pp. 1209-1215. · Zbl 0581.35052
[35] 35. S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math.38 (1985) 321-332. genRefLink(16, ’S0219891616500016BIB035’, ’10.1002
[36] 36. S. Klainerman, The null condition and global existence to nonlinear wave equations, in Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, NM, 1984), Lectures in Appl. Math., Vol. 23 (Amer. Math. Soc., Providence, 1986), pp. 293-326.
[37] 37. S. Klainerman, A commuting vectorfields approach to Strichartz-type inequalities and applications to quasi-linear wave equations, Internat. Math. Res. Notices (2001) 221-274. genRefLink(16, ’S0219891616500016BIB037’, ’10.1155
[38] 38. S. Klainerman and A. Majda, Formation of singularities for wave equations including the nonlinear vibrating string, Comm. Pure Appl. Math.33 (1980) 241-263. genRefLink(16, ’S0219891616500016BIB038’, ’10.1002
[39] 39. S. Klainerman and I. Rodnianski, Improved local well-posedness for quasilinear wave equations in dimension three, Duke Math. J.117 (2003) 1-124. genRefLink(16, ’S0219891616500016BIB039’, ’10.1215
[40] 40. S. Klainerman and I. Rodnianski, Rough solutions of the Einstein-vacuum equations, Ann. Math. (2)161 (2005) 1143-1193. genRefLink(16, ’S0219891616500016BIB040’, ’10.4007
[41] 41. S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math.49 (1996) 307-321. genRefLink(16, ’S0219891616500016BIB041’, ’10.1002
[42] 42. S. Klainerman, Global existence for nonlinear wave equations, Comm. Pure Appl. Math.33 (1980) 43-101. genRefLink(16, ’S0219891616500016BIB042’, ’10.1002
[43] 43. P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math.10 (1957) 537-566. genRefLink(16, ’S0219891616500016BIB043’, ’10.1002
[44] 44. P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys.5 (1964) 611-613. genRefLink(16, ’S0219891616500016BIB044’, ’10.1063
[45] 45. H. Lindblad, Global solutions of nonlinear wave equations, Comm. Pure Appl. Math.45 (1992) 1063-1096. genRefLink(16, ’S0219891616500016BIB045’, ’10.1002
[46] 46. H. Lindblad, Global solutions of quasilinear wave equations, Amer. J. Math.130 (2008) 115-157. genRefLink(16, ’S0219891616500016BIB046’, ’10.1353
[47] 47. H. Lindblad and I. Rodnianski, The weak null condition for Einstein’s equations, C. R. Math. Acad. Sci. Paris336 (2003) 901-906. genRefLink(16, ’S0219891616500016BIB047’, ’10.1016
[48] 48. H. Lindblad and I. Rodnianski, Global existence for the Einstein vacuum equations in wave coordinates, Comm. Math. Phys.256 (2005) 43-110. genRefLink(16, ’S0219891616500016BIB048’, ’10.1007
[49] 49. H. Lindblad and I. Rodnianski, The global stability of Minkowski space-time in harmonic gauge, Ann. Math.171 (2010) 1401-1477. genRefLink(16, ’S0219891616500016BIB049’, ’10.4007
[50] 50. A. Majda, The existence and stability of multidimensional shock fronts, Bull. Amer. Math. Soc. (N.S.)4 (1981) 342-344. genRefLink(16, ’S0219891616500016BIB050’, ’10.1090
[51] 51. A. Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc.43 (1983) v-93.
[52] 52. A. Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc.41 (1983) iv-95.
[53] 53. G. Monge, Application de l’analyse à la géométrie, 5. éd., rev., cor. et annotée par m. Liouville Bachelier, Paris (1850).
[54] 54. C. S. Morawetz, The limiting amplitude principle, Comm. Pure Appl. Math.15 (1962) 349-361. genRefLink(16, ’S0219891616500016BIB054’, ’10.1002
[55] 55. O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations, Uspehi Mat. Nauk (N.S.)12 (1957) 3-73.
[56] 56. J. Rauch, Bv estimates fail for most quasilinear hyperbolic systems in dimensions greater than one, Comm. Math. Phys.106 (1986) 481-484. genRefLink(16, ’S0219891616500016BIB056’, ’10.1007
[57] 57. S. Raychaudhuri, Relativistic cosmology. I, Phys. Rev.98 (1955) 1123-1126. genRefLink(16, ’S0219891616500016BIB057’, ’10.1103
[58] 58. M. Salas, The curious events leading to the theory of shock waves, Shock Waves16 (2007) 477-487. genRefLink(16, ’S0219891616500016BIB058’, ’10.1007
[59] 59. T. C. Sideris, Delayed singularity formation in 2D compressible flow, Amer. J. Math.117 (1999) 371-422. · Zbl 0876.35091
[60] 60. T. C. Sideris, Formation of singularities in solutions to nonlinear hyperbolic equations, Arch. Rational Mech. Anal.86 (1984) 369-381. genRefLink(16, ’S0219891616500016BIB060’, ’10.1007
[61] 61. T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys.101 (1985) 475-485. genRefLink(16, ’S0219891616500016BIB061’, ’10.1007
[62] 62. T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. Math. (2)151 (2000) 849-874. genRefLink(16, ’S0219891616500016BIB062’, ’10.2307
[63] 63. T. C. Sideris, The null condition and global existence of nonlinear elastic waves, Invent. Math.123 (1996) 323-342. genRefLink(16, ’S0219891616500016BIB063’, ’10.1007
[64] 64. H. F. Smith and D. Tataru, Sharp local well-posedness results for the nonlinear wave equation, Ann. Math. (2) (2005) 291-366. genRefLink(16, ’S0219891616500016BIB064’, ’10.4007
[65] 65. C. D. Sogge, Lectures on Non-Linear Wave Equations, 2nd edn. (International Press, Boston, 2008). · Zbl 1165.35001
[66] 66. J. Speck, Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations (2014), arXiv preprint, version 2.
[67] 67. W. Wong, A comment on the construction of the maximal globally hyperbolic Cauchy development, J. Math. Phys.54 (2013) 113511, 8. genRefLink(16, ’S0219891616500016BIB067’, ’10.1063 · Zbl 1288.83009
[68] 68. N. J. Zabusky, Exact solution for the vibrations of a nonlinear continuous model string, J. Math. Phys.3 (1962) 1028-1039. genRefLink(16, ’S0219891616500016BIB068’, ’10.1063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.