×

Existence and blow up of solutions to the \(2D\) Burgers equation with supercritical dissipation. (English) Zbl 1430.35001

Summary: This paper is concerned with the Cauchy problem for a fractal Burgers equation in two dimensions. When \(\alpha \in (0, 1)\), the same problem has been studied in one dimensions, we can refer to [N. Alibaud et al., J. Hyperbolic Differ. Equ. 4, No. 3, 479–499 (2007; Zbl 1144.35038); H. Dong et al., Indiana Univ. Math. J. 58, No. 2, 807–822 (2009; Zbl 1166.35030); A. Kiselev et al., Dyn. Partial Differ. Equ. 5, No. 3, 211–240 (2008; Zbl 1186.35020)]. In this paper, we study well-posedness of solutions to the Burgers equation with supercritical dissipation. We prove the local existence with large initial data and global existence with small initial data in critical Besov space by energy method. Furthermore, we show that solutions can blow up in finite time if initial data is not small by contradiction method.

MSC:

35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B44 Blow-up in context of PDEs
35R11 Fractional partial differential equations
35S10 Initial value problems for PDEs with pseudodifferential operators
Full Text: DOI

References:

[1] N. Alibaud; J. Droniou; J. Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ., 4, 479-499 (2007) · Zbl 1144.35038 · doi:10.1142/S0219891607001227
[2] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Heidelberg, 2011. · Zbl 1227.35004
[3] J. Bertoin, Lévy Processes, vol. 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996. · Zbl 0861.60003
[4] P. Biler; T. Funaki; W. A. Woyczynski, Fractal Burgers equations, J. Differential Equations, 148, 9-46 (1998) · Zbl 0911.35100 · doi:10.1006/jdeq.1998.3458
[5] P. Biler; G. Karch, Blowup of solutions to generalized Keller-Segel model, J. Evol. Equ., 10, 247-262 (2010) · Zbl 1239.35177 · doi:10.1007/s00028-009-0048-0
[6] N. Bournaveas; V. Calvez, The one-dimensional Keller-Segel model with fractional diffusion of cells, Nonlinearity, 23, 923-935 (2010) · Zbl 1195.35065 · doi:10.1088/0951-7715/23/4/009
[7] L. Brandolese; G. Karch, Far field asymptotics of solutions to convection equation with anomalous diffusion, J. Evol. Equ., 8, 307-326 (2008) · Zbl 1146.35318 · doi:10.1007/s00028-008-0356-9
[8] L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930. · Zbl 1204.35063
[9] C. H. Chan; M. Czubak, Regularity of solutions for the critical \(N\)-dimensional Burgers’ equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 471-501 (2010) · Zbl 1189.35354 · doi:10.1016/j.anihpc.2009.11.008
[10] J.-Y. Chemin, Perfect Incompressible Fluids, vol. 14 of Oxford Lecture Series in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1998, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. · Zbl 0927.76002
[11] Q. Chen; C. Miao; Z. Zhang, A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys., 271, 821-838 (2007) · Zbl 1142.35069 · doi:10.1007/s00220-007-0193-7
[12] P. Constantin, D. Cordoba and J. Wu, On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 50 (2001), 97-108, https://doi.org/10.1512/iumj.2008.57.3629, Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). · Zbl 0989.86004
[13] P. Constantin; V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22, 1289-1321 (2012) · Zbl 1256.35078 · doi:10.1007/s00039-012-0172-9
[14] P. Constantin; J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30, 937-948 (1999) · Zbl 0957.76093 · doi:10.1137/S0036141098337333
[15] A. Córdoba; D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249, 511-528 (2004) · Zbl 1309.76026 · doi:10.1007/s00220-004-1055-1
[16] R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 133, 1311-1334 (2003) · Zbl 1050.76013 · doi:10.1017/S030821050000295X
[17] H. Dong; D. Du; D. Li, Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J., 58, 807-821 (2009) · Zbl 1166.35030 · doi:10.1512/iumj.2009.58.3505
[18] J. Droniou, T. Gallouet and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ., 3 (2003), 499-521, Dedicated to Philippe Bénilan. · Zbl 1036.35123
[19] R. Granero-Belinchón, On a drift-diffusion system for semiconductor devices, Ann. Henri Poincaré, 17, 3473-3498 (2016) · Zbl 1361.82038 · doi:10.1007/s00023-016-0493-6
[20] N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Comm. Math. Phys., 255, 161-181 (2005) · Zbl 1088.37049 · doi:10.1007/s00220-004-1256-7
[21] G. Karch, Nonlinear evolution equations with anomalous diffusion, in Qualitative Properties of Solutions to Partial Differential Equations, vol. 5 of Jindřich Nečas Cent. Math. Model. Lect. Notes, Matfyzpress, Prague, 2009, 25-68.
[22] N. H. Katz; N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal., 12, 355-379 (2002) · Zbl 0999.35069 · doi:10.1007/s00039-002-8250-z
[23] A. Kiselev; F. Nazarov; A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167, 445-453 (2007) · Zbl 1121.35115 · doi:10.1007/s00222-006-0020-3
[24] A. Kiselev; F. Nazarov; R. Shterenberg, Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ., 5, 211-240 (2008) · Zbl 1186.35020 · doi:10.4310/DPDE.2008.v5.n3.a2
[25] D. Li; J. L. Rodrigo; X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoam., 26, 295-332 (2010) · Zbl 1195.35182 · doi:10.4171/RMI/602
[26] F. Li; F. Rong, Decay of solutions to fractal parabolic conservation laws with large initial data, Commun. Pure Appl. Anal., 12, 973-984 (2013) · Zbl 1267.35035 · doi:10.3934/cpaa.2013.12.973
[27] R. Metzler; J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[28] C. Miao; G. Wu, Global well-posedness of the critical Burgers equation in critical Besov spaces, J. Differential Equations, 247, 1673-1693 (2009) · Zbl 1184.35003 · doi:10.1016/j.jde.2009.03.028
[29] R. Shi; W. Wang, Nonlinear stability of large perturbation around the viscous shock wave for the 2D scalar viscous conservation law, Indiana Univ. Math. J., 65, 1137-1182 (2016) · Zbl 1362.35041 · doi:10.1512/iumj.2016.65.5850
[30] Y. Sugiyama; M. Yamamoto; K. Kato, Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation in the critical space, J. Differential Equations, 258, 2983-3010 (2015) · Zbl 1321.35078 · doi:10.1016/j.jde.2014.12.033
[31] H. Triebel, Theory of Function Spaces, vol. 78 of Monographs in Mathematics, Birkhäuser Verlag, Basel, 1983. · Zbl 0546.46028
[32] L. Wang; W. Wang, Large-time behavior of periodic solutions to fractal Burgers equation with large initial data, Chin. Ann. Math. Ser. B, 33, 405-418 (2012) · Zbl 1255.35053 · doi:10.1007/s11401-012-0710-7
[33] W. Wang; W. Wang, Blow up and global existence of solutions for a model system of the radiating gas, Nonlinear Anal., 81, 12-30 (2013) · Zbl 1262.35058 · doi:10.1016/j.na.2012.12.010
[34] J. Wu, The quasi-geostrophic equation and its two regularizations, Comm. Partial Differential Equations, 27, 1161-1181 (2002) · Zbl 1012.35067 · doi:10.1081/PDE-120004898
[35] X. Xu, Local well-posedness and ill-posedness for the fractal Burgers equation in homogeneous Sobolev spaces, Math. Methods Appl. Sci., 32, 359-370 (2009) · Zbl 1155.35420 · doi:10.1002/mma.1046
[36] W. P. Ziemer, Weakly Differentiable Functions, vol. 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989, Sobolev spaces and functions of bounded variation. · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.