×

Standing waves on quantum graphs. (English) Zbl 1507.81100

Summary: We review evolutionary models on quantum graphs expressed by linear and nonlinear partial differential equations. Existence and stability of the standing waves trapped on quantum graphs are studied by using methods of the variational theory, dynamical systems on a phase plane, and the Dirichlet-to-Neumann mappings.

MSC:

81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
35Q55 NLS equations (nonlinear Schrödinger equations)

Software:

QGLAB

References:

[1] Adami, R., Ground states for NLS on graphs: a subtle interplay of metric and topology, Math. Model. Nat. Phenom., 11, 20-35 (2016) · Zbl 1390.35315 · doi:10.1051/mmnp/201611202
[2] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., Fast solitons on star graphs, Rev. Math. Phys., 23, 409-451 (2011) · Zbl 1222.35182 · doi:10.1142/s0129055x11004345
[3] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., On the structure of critical energy levels for the cubic focusing NLS on star graphs, J. Phys. A: Math. Theor., 45 (2012) · Zbl 1247.81104 · doi:10.1088/1751-8113/45/19/192001
[4] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., Variational properties and orbital stability of standing waves for NLS equation on a star graph, J. Differ. Equ., 257, 3738-3777 (2014) · Zbl 1300.35129 · doi:10.1016/j.jde.2014.07.008
[5] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., Constrained energy minimization and orbital stability for the NLS equation on a star graph, Ann. Inst. Henri Poincaré C, 31, 1289-1310 (2014) · Zbl 1304.81087 · doi:10.1016/j.anihpc.2013.09.003
[6] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy, J. Differ. Equ., 260, 7397-7415 (2016) · Zbl 1336.35316 · doi:10.1016/j.jde.2016.01.029
[7] Adami, R.; Dovetta, S.; Serra, E.; Tilli, P., Dimensional crossover with a continuum of critical exponents for NLS on doubly periodic metric graphs, Anal. PDE, 12, 1597-1612 (2019) · Zbl 1414.35202 · doi:10.2140/apde.2019.12.1597
[8] Adami, R.; Serra, E.; Tilli, P., NLS ground states on graphs, Calc. Var. Partial Differ. Equ., 54, 743-761 (2015) · Zbl 1330.35484 · doi:10.1007/s00526-014-0804-z
[9] Adami, R.; Serra, E.; Tilli, P., Threshold phenomena and existence results for NLS ground states on metric graphs, J. Funct. Anal., 271, 201-223 (2016) · Zbl 1338.35448 · doi:10.1016/j.jfa.2016.04.004
[10] Adami, R.; Serra, E.; Tilli, P., Negative energy ground states for the L^2-critical NLSE on metric graphs, Commun. Math. Phys., 352, 387-406 (2017) · Zbl 1372.35319 · doi:10.1007/s00220-016-2797-2
[11] Adami, R.; Serra, E.; Tilli, P., Nonlinear dynamics on branched structures and networks, Riv. Math. Univ. Parma, 8, 109-159 (2017) · Zbl 1391.35381
[12] Adami, R.; Serra, E.; Tilli, P., Multiple positive bound states for the subcritical NLS equation on metric graphs, Calc. Var. Partial Differ. Equ., 58, 16 (2019) · Zbl 1405.35236 · doi:10.1007/s00526-018-1461-4
[13] Agueh, M., Sharp Gagliardo-Nirenberg inequalities and mass transport theory, J. Dyn. Differ. Equ., 18, 1069-1093 (2006) · Zbl 1155.35320 · doi:10.1007/s10884-006-9039-9
[14] Agueh, M., Gagliardo-Nirenberg inequalities involving the gradient L^2-norm, C. R. Math., 346, 757-762 (2008) · Zbl 1149.35329 · doi:10.1016/j.crma.2008.05.015
[15] Akduman, S.; Pankov, A., Nonlinear Schrödinger equation with growing potential on infinite metric graphs, Nonlinear Anal., 184, 258-272 (2019) · Zbl 1418.35333 · doi:10.1016/j.na.2019.02.020
[16] Ali Mehmeti, F., Nonlinear Waves in Networks (1994), Berlin: Akademie Verlag, Berlin · Zbl 0831.35096
[17] Ammari, K.; Crépeau, E., Feedback stabilization and boundary controllability of the Korteweg-de Vries equation on a star-shaped network, SIAM J. Control Optim., 56, 1620-1639 (2018) · Zbl 1392.35253 · doi:10.1137/17m113959x
[18] Pava, J. A.; Cavalcante, M., Linear instability criterion for the Korteweg-de Vries equation on metric star graphs, Nonlinearity, 34, 3373-3410 (2021) · Zbl 1468.35164 · doi:10.1088/1361-6544/abea6b
[19] Pava, J. A.; Goloshchapova, N., Extension theory approach in stability of standing waves for NLS equation with point interactions, Adv. Diff. Equ., 23, 793-846 (2018) · Zbl 1402.35261
[20] Pava, J. A.; Goloshchapova, N., On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph, Discrete Continuous Dyn. Syst., 38, 5039-5066 (2018) · Zbl 1397.35288 · doi:10.3934/dcds.2018221
[21] Pava, J. A.; Goloshchapova, N., Stability properties of standing waves for NLS equations with the δ′-interaction, Physica D, 403 (2020) · Zbl 1490.35389 · doi:10.1016/j.physd.2020.132332
[22] Pava, J. A.; Plaza, R., Instability of static solutions of the sine-Gordon equation on a Y-junction graph with δ-interaction, J. Nonlinear Sci., 31, 50 (2021) · Zbl 1462.35326 · doi:10.1007/s00332-021-09711-7
[23] Pava, J. A.; Plaza, R. G., Instability theory of kink and anti-kink profiles for the sine-Gordon equation on Josephson tricrystal boundaries, Physica D, 427 (2021) · Zbl 1484.35120 · doi:10.1016/j.physd.2021.133020
[24] Pava, J. A.; Plaza, R. G., Stability properties of stationary kink-profile solutions for the sine-Gordon equation on a Y-junction graph with δ′-interaction at the vertex, Math. Z., 300, 2885-2915 (2021) · Zbl 1491.35389 · doi:10.1007/s00209-021-02899-0
[25] Ardila, A. H., Orbital stability of standing waves for supercritical NLS with potential on graphs, Appl. Anal., 99, 1359-1372 (2020) · Zbl 1434.35174 · doi:10.1080/00036811.2018.1530763
[26] Ardila, A. H.; Cely, L.; Goloshchapova, N., Instability of ground states for the NLS equation with potential on the star graph, J. Evol. Equ., 21, 3703-3732 (2021) · Zbl 1483.35195 · doi:10.1007/s00028-021-00670-w
[27] Banica, V.; Ignat, L., Dispersion for the Schrödinger equation on the line with multiple Dirac delta potentials and on delta trees, Anal. PDE, 7, 903-927 (2014) · Zbl 1297.35200 · doi:10.2140/apde.2014.7.903
[28] Band, R.; Gnutzmann, S.; Krueger, A., On the nodal structure of nonlinear stationary waves on star graphs, Symmetry, 11, 185 (2019) · Zbl 1416.81066 · doi:10.3390/sym11020185
[29] Beck, G.; Imperiale, S.; Joly, P., Mathematical modelling of multi conductor cables, Discrete Continuous Dyn. Syst. S, 8, 521-546 (2015) · Zbl 1321.35218 · doi:10.3934/dcdss.2015.8.521
[30] Benjamin, T. B., The stability of solitary waves, Proc. R. Soc. A, 328, 153-183 (1972) · doi:10.1098/rspa.1972.0074
[31] Berkolaiko, G.; Kennedy, J. B.; Kurasov, P.; Mugnolo, D., Surgery principles for the spectral analysis of quantum graphs, Trans. Am. Math. Soc., 372, 5153-5197 (2019) · Zbl 1451.34029 · doi:10.1090/tran/7864
[32] Berkolaiko, G.; Kuchment, P., Introduction to Quantum Graphs (2013), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1318.81005
[33] Berkolaiko, G.; Marzuola, J.; Pelinovsky, D. E., Edge-localized states on quantum graphs in the limit of large mass, Ann. Inst. Henri Poincare C, 38, 1295-1335 (2021) · Zbl 1477.35230 · doi:10.1016/J.ANIHPC.2020.11.003
[34] Besse, C.; Duboscq, R.; Le Coz, S., Gradient flow approach to the calculation of stationary states on nonlinear quantum graphs, Ann. Henri Lebesgue, 5, 387-428 (2022) · Zbl 1490.35393 · doi:10.5802/ahl.126
[35] Bona, J., On the stability theory of solitary waves, Proc. R. Soc. A, 344, 363-374 (1975) · Zbl 0328.76016 · doi:10.1098/rspa.1975.0106
[36] Bona, J. L.; Cascaval, R. C., Nonlinear dispersive waves on trees, Can. J. Appl. Math., 16, 1-18 (2008) · Zbl 1167.76054
[37] Bona, J. L.; Sun, S. M.; Zhang, B-Y, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Commun. PDE, 28, 1391-1436 (2003) · Zbl 1057.35049 · doi:10.1081/pde-120024373
[38] Borrelli, W.; Carlone, R.; Tentarelli, L., An overview on the standing waves of nonlinear Schrödinger and Dirac equations on metric graphs with localized nonlinearity, Symmetry, 11, 169 (2019) · Zbl 1416.35287 · doi:10.3390/sym11020169
[39] Borrelli, W.; Carlone, R.; Tentarelli, L., Nonlinear Dirac equation on graphs with localized nonlinearities: bound states and nonrelativistic limit, SIAM J. Math. Anal., 51, 1046-1081 (2019) · Zbl 1411.35263 · doi:10.1137/18m1211714
[40] Borrelli, W.; Carlone, R.; Tentarelli, L., On the nonlinear Dirac equation on noncompact metric graphs, J. Differ. Equ., 278, 326-357 (2021) · Zbl 1457.35045 · doi:10.1016/j.jde.2021.01.005
[41] Bulla, W.; Trenkler, T., The free Dirac operator on compact and noncompact graphs, J. Math. Phys., 31, 1157-1163 (1990) · Zbl 0699.47032 · doi:10.1063/1.529025
[42] Cacciapuoti, C., Existence of the ground state for the NLS with potential on graphs, Mathematical Problems in Quantum Physics, 155-172 (2018), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1428.35487
[43] Cacciapuoti, C.; Dovetta, S.; Serra, E., Variational and stability properties of constant solutions to the NLS equation on compact metric graphs, Milan J. Math., 86, 305-327 (2018) · Zbl 1404.35470 · doi:10.1007/s00032-018-0288-y
[44] Cacciapuoti, C.; Finco, D.; Noja, D., Topology induced bifurcations for the NLS on the tadpole graph, Phys. Rev. E, 91 (2015) · doi:10.1103/physreve.91.013206
[45] Cacciapuoti, C.; Finco, D.; Noja, D., Ground state and orbital stability for the NLS equation on a general starlike graph with potentials, Nonlinearity, 30, 3271-3303 (2017) · Zbl 1373.35284 · doi:10.1088/1361-6544/aa7cc3
[46] Caputo, J. G.; Dutykh, D., Nonlinear waves in networks: model reduction for the sine-Gordon equation, Phys. Rev. E, 90 (2014) · doi:10.1103/physreve.90.022912
[47] Caputo, J-G; Dutykh, D.; Gleyse, B., Coupling conditions for water waves at forks, Symmetry, 11, 434 (2019) · Zbl 1423.35305 · doi:10.3390/sym11030434
[48] Cavalcante, M., The Korteweg-de Vries equation on a metric star graph, Z. Angew. Math. Phys., 69, 124 (2018) · Zbl 1405.35182 · doi:10.1007/s00033-018-1018-6
[49] Caudrelier, V., On the inverse scattering method for integrable PDEs on a star graph, Commun. Math. Phys., 338, 893-917 (2015) · Zbl 1342.35449 · doi:10.1007/s00220-015-2378-9
[50] Cazenave, T., Semilinear Schrödinger Equations (2003), New York: Courant Institute of Mathematical Sciences, New York University, New York · Zbl 1055.35003
[51] Cazenave, T.; Lions, P. L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85, 549-561 (1982) · Zbl 0513.35007 · doi:10.1007/bf01403504
[52] Cerpa, E.; Crépeau, E.; Valein, J., Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network, Evol. Equ. Control Theory, 9, 673-692 (2020) · Zbl 1452.35147 · doi:10.3934/eect.2020028
[53] Dell’Antonio, G. F.; Costa, E., Effective Schrödinger dynamics on ϵ-thin Dirichlet waveguides via quantum graphs: star-shaped graphs, J. Phys. A: Math. Theor., 43 (2010) · Zbl 1204.81081 · doi:10.1088/1751-8113/43/47/474014
[54] Dolbeault, J.; Esteban, M. J.; Laptev, A.; Loss, M., One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: remarks on duality and flows, J. Lond. Math. Soc., 90, 525-550 (2014) · Zbl 1320.26017 · doi:10.1112/jlms/jdu040
[55] Dovetta, S., Existence of infinitely many stationary solutions of the L^2-subcritical and critical NLSE on compact metric graphs, J. Differ. Equ., 264, 4806-4821 (2018) · Zbl 1391.35382 · doi:10.1016/j.jde.2017.12.025
[56] Dovetta, S., Mass-constrained ground states of the stationary NLSE on periodic metric graphs, Nonlinear Differ. Equ. Appl., 26, 30 (2019) · Zbl 1428.35650 · doi:10.1007/s00030-019-0576-4
[57] Dovetta, S.; Ghimenti, M.; Micheletti, A. M.; Pistoia, A., Peaked and low action solutions of NLS equations on graphs with terminal edges, SIAM J. Math. Anal., 52, 2874-2894 (2020) · Zbl 1454.35336 · doi:10.1137/19m127447x
[58] Dovetta, S.; Serra, E.; Tilli, P., NLS ground states on metric trees: existence results and open questions, J. Lond. Math. Soc., 102, 1223-1240 (2020) · Zbl 1462.35424 · doi:10.1112/jlms.12361
[59] Dovetta, S.; Serra, E.; Tilli, P., Uniqueness and non-uniqueness of prescribed mass NLS ground states on metric graphs, Adv. Math., 374 (2020) · Zbl 1511.34037 · doi:10.1016/j.aim.2020.107352
[60] Dovetta, S.; Serra, E.; Tilli, P., Action versus energy ground states in nonlinear Schrödinger equations, Math. Ann. (2022) · Zbl 1518.35573 · doi:10.1007/s00208-022-02382-z
[61] Dovetta, S.; Tentarelli, L., L^2-critical NLS on noncompact metric graphs with localized nonlinearity: topological and metric features, Calc. Var. Partial Differ. Equ., 58, 108 (2019) · Zbl 1432.35212 · doi:10.1007/s00526-019-1565-5
[62] Dovetta, S.; Tentarelli, L., Symmetry breaking in two-dimensional square grids: persistence and failure of the dimensional crossover, J. Pure Appl. Math., 160, 99-157 (2022) · Zbl 1486.35007 · doi:10.1016/j.matpur.2021.12.010
[63] Exner, P.; Kovarik, H., Quantum Waveguides (2015), Heidelberg: Springer, Heidelberg · Zbl 1314.81001
[64] Fefferman, C. L.; Weinstein, M. I., Wave packets in honeycomb structures and two-dimensional Dirac equations, Commun. Math. Phys., 326, 251-286 (2014) · Zbl 1292.35195 · doi:10.1007/s00220-013-1847-2
[65] Fukuizumi, R.; Ohta, M.; Ozawa, T., Nonlinear Schrödinger equation with a point defect, Ann. Inst. Henri Poincare C, 25, 837-845 (2008) · Zbl 1145.35457 · doi:10.1016/j.anihpc.2007.03.004
[66] Garijo, A.; Villadelprat, J., Algebraic and analytical tools for the study of the period function, J. Differ. Equ., 257, 2464-2484 (2014) · Zbl 1305.34050 · doi:10.1016/j.jde.2014.05.044
[67] Geyer, A.; Martins, R. H.; Natali, F.; Pelinovsky, D. E., Stability of smooth periodic travelling waves in the Camassa-Holm equation, Stud. Appl. Math., 148, 27-61 (2022) · Zbl 1533.37149 · doi:10.1111/sapm.12430
[68] Geyer, A.; Pelinovsky, D. E., Spectral stability of periodic waves in the generalized reduced Ostrovsky equation, Lett. Math. Phys., 107, 1293-1314 (2017) · Zbl 1373.35041 · doi:10.1007/s11005-017-0941-3
[69] Geyer, A.; Villadelprat, J., On the wave length of smooth periodic traveling waves of the Camassa-Holm equation, J. Differ. Equ., 259, 2317-2332 (2015) · Zbl 1317.35196 · doi:10.1016/j.jde.2015.03.027
[70] Gilg, S.; Pelinovsky, D.; Schneider, G., Validity of the NLS approximation for periodic quantum graphs, Nonlinear Differ. Equ. Appl., 23, 63 (2016) · Zbl 1367.35156 · doi:10.1007/s00030-016-0417-7
[71] Gnutzman, S.; Smilansky, U.; Derevyanko, S., Stationary scattering from a nonlinear network, Phys. Rev. A, 83 (2011) · doi:10.1103/physreva.83.033831
[72] Gnutzmann, S.; Waltner, D., Stationary waves on nonlinear quantum graphs: general framework and canonical perturbation theory, Phys. Rev. E, 93 (2016) · doi:10.1103/physreve.93.032204
[73] Gnutzmann, S.; Waltner, D., Stationary waves on nonlinear quantum graphs: II. Application of canonical perturbation theory in basic graph structures, Phys. Rev. E, 94 (2016) · doi:10.1103/physreve.94.062216
[74] Goloshchapova, N., A nonlinear Klein-Gordon equation on a star graph, Math. Nachr., 294, 1742-1764 (2021) · Zbl 1527.35318 · doi:10.1002/mana.201900526
[75] Goloshchapova, N., Dynamical and variational properties of the NLS-\(####\) equation on the star graph, J. Differ. Equ., 310, 1-44 (2022) · Zbl 1483.35211 · doi:10.1016/j.jde.2021.11.047
[76] Goloshchapova, N.; Ohta, M., Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph, Nonlinear Anal., 196 (2020) · Zbl 1464.35322 · doi:10.1016/j.na.2020.111753
[77] Goodman, R. H., NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph, Discrete Continuous Dyn. Syst., 39, 2203-2232 (2019) · Zbl 1410.35266 · doi:10.3934/dcds.2019093
[78] Goodman, R. H.; Conte, G.; Marzuola, J. L., Quantum Graphs Package (QGLAB) (2021) · doi:10.5281/zenodo.4898112
[79] Grecu, A.; Ignat, L. I., The Schrödinger equation on a star-shaped graph under general coupling conditions, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1422.81098 · doi:10.1088/1751-8121/aaf3fc
[80] Grillakis, M., Linearized instability for nonlinear Schrödinger and Klein-Gordon equations, Commun. Pure Appl. Math., 41, 747-774 (1988) · Zbl 0632.70015 · doi:10.1002/cpa.3160410602
[81] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry: I, J. Funct. Anal., 74, 160-197 (1987) · Zbl 0656.35122 · doi:10.1016/0022-1236(87)90044-9
[82] Haddad, L. H.; Carr, L. D., The nonlinear Dirac equation in Bose-Einstein condensates: foundation and symmetries, Physica D, 238, 1413-1421 (2009) · Zbl 1167.82306 · doi:10.1016/j.physd.2009.02.001
[83] Hofmann, M., Spectral theory, clustering problems and differential equations on metric graphs, PhD Thesis (2021)
[84] Kairzhan, A., Orbital instability of standing waves for NLS equation on star graphs, Proc. Am. Math. Soc., 147, 2911-2924 (2019) · Zbl 1420.35363 · doi:10.1090/proc/14463
[85] Kairzhan, A.; Marangell, R.; Pelinovsky, D. E.; Xiao, K. L., Standing waves on a flower graph, J. Differ. Equ., 271, 719-763 (2021) · Zbl 1454.35406 · doi:10.1016/j.jde.2020.09.010
[86] Kairzhan, A.; Pelinovsky, D. E., Nonlinear instability of half-solitons on star graphs, J. Differ. Equ., 264, 7357-7383 (2018) · Zbl 1392.35289 · doi:10.1016/j.jde.2018.02.020
[87] Kairzhan, A.; Pelinovsky, D. E., Spectral stability of shifted states on star graphs, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1397.35278 · doi:10.1088/1751-8121/aaa89f
[88] Kairzhan, A.; Pelinovsky, D. E., Multi-pulse edge-localized states on quantum graphs, Anal. Math. Phys., 11, 171 (2021) · Zbl 1477.35242 · doi:10.1007/s13324-021-00603-3
[89] Kairzhan, A.; Pelinovsky, D. E.; Goodman, R. H., Drift of spectrally stable shifted states on star graphs, SIAM J. Appl. Dyn. Syst., 18, 1723-1755 (2019) · Zbl 1435.35401 · doi:10.1137/19m1246146
[90] Kuchment, P., Graph models for waves in thin structures, Waves Random Media, 12, R1-R24 (2002) · Zbl 1063.35525 · doi:10.1088/0959-7174/12/4/201
[91] Kurata, K.; Shibata, M., Least energy solutions to semi-linear elliptic problems on metric graphs, J. Math. Anal. Appl., 491 (2020) · Zbl 1448.35250 · doi:10.1016/j.jmaa.2020.124297
[92] Lions, P. L., The concentration-compactness principle in the calculus of variations. The locally compact case: I, Ann. Inst. Henri Poincaré C, 1, 109-145 (1984) · Zbl 0541.49009 · doi:10.1016/s0294-1449(16)30428-0
[93] Lions, P. L., The concentration-compactness principle in the calculus of variations. The locally compact case: II, Ann. Inst. Henri Poincaré C, 1, 223-283 (1984) · Zbl 0704.49004 · doi:10.1016/s0294-1449(16)30422-x
[94] Lorenzo, M., On Bose-Einstein condensation in Josephson junctions star graph arrays, Phys. Lett. A, 378, 655-658 (2014) · doi:10.1016/j.physleta.2013.12.032
[95] Marzuola, J. L.; Pelinovsky, D. E., Ground state on the dumbbell graph, Appl. Math. Res. Express, 2016, 98-145 (2016) · Zbl 1345.35105 · doi:10.1093/amrx/abv011
[96] Mehmeti, F. A.; Ammari, K.; Nicaise, S., Dispersive effects for the Schrödinger equation on the tadpole graph, J. Math. Anal. Appl., 448, 262-280 (2017) · Zbl 1357.35269 · doi:10.1016/j.jmaa.2016.10.060
[97] Mugnolo, D., Semigroup Methods for Evolution Equations on Networks (2014), New York: Springer, New York · Zbl 1306.47001
[98] Mugnolo, D.; Noja, D.; Seifert, C., Airy-type evolution equations on star graphs, Anal. PDE, 11, 1625-1652 (2018) · Zbl 06881629 · doi:10.2140/apde.2018.11.1625
[99] Mugnolo, D.; Rault, J. F., Construction of exact travelling waves for the Benjamin-Bona-Mahony equation on networks, Bull. Belg. Math. Soc. Simon Stevin, 21, 415-436 (2014) · Zbl 1315.35052 · doi:10.36045/bbms/1407765881
[100] Nachbin, A.; Simões, V. S., Solitary waves in forked channel regions, J. Fluid Mech., 777, 544-568 (2015) · doi:10.1017/jfm.2015.359
[101] Noja, D., Nonlinear Schrödinger equation on graphs: recent results and open problems, Phil. Trans. R. Soc. A, 372, 20130002 (2014) · Zbl 1322.35130 · doi:10.1098/rsta.2013.0002
[102] Noja, D.; Pelinovsky, D. E., Standing waves of the quintic NLS equation on the tadpole graph, Calc. Var. Partial Differ. Equ., 59, 173 (2020) · Zbl 1448.35474 · doi:10.1007/s00526-020-01832-3
[103] Noja, D.; Pelinovsky, D.; Shaikhova, G., Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph, Nonlinearity, 28, 243-278 (2015) · Zbl 1328.35216 · doi:10.1088/0951-7715/28/7/2343
[104] Noja, D.; Rolando, S.; Secchi, S., Standing waves for the NLS on the double-bridge graph and a rational-irrational dichotomy, J. Differ. Equ., 266, 147-178 (2019) · Zbl 1402.35260 · doi:10.1016/j.jde.2018.07.038
[105] Pankov, A., Nonlinear Schrödinger equations on periodic metric graphs, Discrete Contin. Dyn. Syst. A, 38, 697-714 (2018) · Zbl 1374.35386 · doi:10.3934/dcds.2018030
[106] Pelinovsky, D.; Schneider, G., Justification of the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential, Appl. Anal., 86, 1017-1036 (2007) · Zbl 1132.41344 · doi:10.1080/00036810701493850
[107] Pelinovsky, D.; Schneider, G., Bifurcations of standing localized waves on periodic graphs, Ann. Henri Poincaré, 18, 1185-1211 (2017) · Zbl 1387.35556 · doi:10.1007/s00023-016-0536-z
[108] Pelinovsky, D. E.; Ross, R. M.; Kevrekidis, P. G., Solitary waves with intensity-dependent dispersion: variational characterization, J. Phys. A: Math. Theor., 54 (2021) · Zbl 1519.35057 · doi:10.1088/1751-8121/ac284f
[109] Pierotti, D.; Soave, N.; Verzini, G., Local minimizers in absence of ground states for the critical NLS energy on metric graphs, Proc. Roy. Soc. Edinb. A, 151, 705-733 (2021) · Zbl 1464.35329 · doi:10.1017/prm.2020.36
[110] Post, O., Spectral convergence of quasi-one-dimensional spaces, Ann. Henri Poincaré, 7, 933-973 (2006) · Zbl 1187.81124 · doi:10.1007/s00023-006-0272-x
[111] Post, O., Approximations of metric graphs by thick graphs and their Laplacians, Symmetry, 11, 369 (2019) · Zbl 1423.41053 · doi:10.3390/sym11030369
[112] Sabirov, K. K.; Sobirov, Z. A.; Babajanov, D.; Matrasulov, D. U., Stationary nonlinear Schrödinger equation on simplest graphs, Phys. Lett. A, 377, 860-865 (2013) · Zbl 1298.35236 · doi:10.1016/j.physleta.2013.02.011
[113] Sabirov, K. K.; Babajanov, D. B.; Matrasulov, D. U.; Kevrekidis, P. G., Dynamics of Dirac solitons in networks, J. Phys. A: Math. Theor., 51 (2018) · doi:10.1088/1751-8121/aadfb0
[114] Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H., The stationary sine-Gordon equation on metric graphs: exact analytical solutions for simple topologies, Phys. Lett. A, 382, 1092 (2018) · Zbl 1383.35200 · doi:10.1016/j.physleta.2017.12.057
[115] Serra, E.; Tentarelli, L., Bound states of the NLS equation on metric graphs with localized nonlinearities, J. Differ. Equ., 260, 5627-5644 (2016) · Zbl 1408.35206 · doi:10.1016/j.jde.2015.12.030
[116] Serra, E.; Tentarelli, L., On the lack of bound states for certain NLS equations on metric graphs, Nonlinear Anal. Theor. Methods Appl., 145, 68-82 (2016) · Zbl 1347.35226 · doi:10.1016/j.na.2016.07.008
[117] Sobirov, Z.; Matrasulov, D. U.; Sabirov, K. K.; Sawada, S.; Nakamura, K., Integrable nonlinear Schrödinger equation on simple networks: connection formula at vertices, Phys. Rev. E, 81 (2010) · doi:10.1103/physreve.81.066602
[118] Sobirov, Z.; Babajanov, D.; Matrasulov, D.; Nakamura, K.; Uecker, H., Sine-Gordon solitons in networks: scattering and transmission at vertices, Europhys. Lett., 115 (2016) · doi:10.1209/0295-5075/115/50002
[119] Susanto, H.; Karjanto, N.; Zulkarnain; Nusantara, T.; Widjanarko, T., Soliton and breather splitting on star graphs from tricrystal Josephson junctions, Symmetry, 11, 271 (2019) · Zbl 1416.35068 · doi:10.3390/sym11020271
[120] Tentarelli, L., NLS ground states on metric graphs with localized nonlinearities, J. Math. Anal. Appl., 433, 291-304 (2016) · Zbl 1321.05278 · doi:10.1016/j.jmaa.2015.07.065
[121] Tran, T. X.; Longhi, S.; Biancalana, F., Optical analogue of relativistic Dirac solitons in binary waveguide arrays, Ann. Phys., NY, 340, 179-187 (2014) · Zbl 1348.81248 · doi:10.1016/j.aop.2013.10.017
[122] Uecker, H.; Grieser, D.; Sobirov, Z.; Babajanov, D.; Matrasulov, D., Soliton transport in tubular networks: transmission at vertices in the shrinking limit, Phys. Rev. E, 91 (2015) · doi:10.1103/physreve.91.023209
[123] Vakhitov, N. G.; Kolokolov, A. A., Stationary solutions of the wave equation in a medium with nonlinearity saturation, Radiophys. Quantum Electron, 16, 783-789 (1973) · doi:10.1007/bf01031343
[124] Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V., Dirac materials, Adv. Phys., 63, 1-76 (2014) · doi:10.1080/00018732.2014.927109
[125] Weinstein, M. I., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16, 472-491 (1985) · Zbl 0583.35028 · doi:10.1137/0516034
[126] Weinstein, M. I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., 39, 51-67 (1986) · Zbl 0594.35005 · doi:10.1002/cpa.3160390103
[127] Yusupov, J.; Sabirov, K.; Ehrhardt, M.; Matrasulov, D., Transparent quantum graphs, Phys. Lett. A, 383, 2382-2388 (2020) · Zbl 1476.81048 · doi:10.1016/j.physleta.2019.04.059
[128] Yusupov, J.; Sabirov, K.; Ehrhardt, M.; Matrasulov, D., Transparent nonlinear networks, Phys. Rev. E, 100 (2019) · doi:10.1103/physreve.100.032204
[129] Yusupov, J. R.; Sabirov, K. K.; Asadov, Q. U.; Ehrhardt, M.; Matrasulov, D. U., Dirac particles in transparent quantum graphs: tunable transport of relativistic quasiparticles in branched structures, Phys. Rev. E, 101 (2020) · doi:10.1103/physreve.101.062208
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.