×

Algebraic and analytical tools for the study of the period function. (English) Zbl 1305.34050

The authors study the period function of the system \[ \dot x=p(x,y), \quad \dot y=q(x,y), \] which has a center at the origin and a first integral of the form \(H(x,y)=A(x)+B(x) y+C(x) y^2\) with \(A(0)=0\). It is also assumed that the system has an integrating factor, which depends only on \(x\). First, they give a criterion for estimation the number of critical periods in such systems and a necessary condition for the period function to be monotone. Then, the study of the number of critical periods bifurcating from the period annulus of an isochrone perturbed linearly inside a family of centers is performed. Four examples illustrating the obtained results are presented.

MSC:

34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Brieskorn, E.; Knörrer, H., Plane Algebraic Curves, Modern Birkhäuser Classics (2012), Birkhäuser/Springer Basel AG: Birkhäuser/Springer Basel AG Basel, translated from the German original by John Stillwell, reprint of the 1986 edition · Zbl 1254.14002
[2] Busé, L.; Khalil, H.; Mourrain, B., Resultant-based methods for plane curves intersection problems, (Proceedings of the 8th International Workshop on Computer Algebra in Scientific Computing. Proceedings of the 8th International Workshop on Computer Algebra in Scientific Computing, CASC 2005. Proceedings of the 8th International Workshop on Computer Algebra in Scientific Computing. Proceedings of the 8th International Workshop on Computer Algebra in Scientific Computing, CASC 2005, Lecture Notes in Comput. Sci., vol. 3718 (2005), Springer: Springer Berlin) · Zbl 1169.65316
[3] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergrad. Texts Math. (2007), Springer: Springer New York · Zbl 1118.13001
[4] Chen, X.; Romanovski, V.; Zhang, W., Critical periods of perturbations of reversible rigidly isochronous centers, J. Differential Equations, 251, 1505-1525 (2011) · Zbl 1237.34078
[5] Chicone, C., The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 69, 310-321 (1987) · Zbl 0622.34033
[6] Chicone, C.; Jacobs, M., Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc., 312, 433-486 (1989) · Zbl 0678.58027
[8] Chouikha, R., Monotonicity of the period function for some planar differential systems. Part I: Conservative and quadratic systems, Appl. Math., 32, 305-325 (2005) · Zbl 1161.34020
[9] Cima, A.; Mañosas, F.; Villadelprat, J., Isochronicity for several classes of Hamiltonian systems, J. Differential Equations, 157, 373-413 (1999) · Zbl 0941.34017
[10] Cima, A.; Gasull, A.; da Silva, Paulo R., On the number of critical periods for planar polynomial systems, Nonlinear Anal., 69, 1889-1903 (2008) · Zbl 1157.34021
[11] Christopher, C. J.; Devlin, C. J., Isochronous centres in planar polynomial systems, SIAM J. Math. Anal., 28, 162-177 (1997) · Zbl 0881.34057
[12] Coppel, W. A.; Gavrilov, L., The period function of a Hamiltonian quadratic system, Differential Integral Equations, 6, 1357-1365 (1993) · Zbl 0780.34023
[13] Fulton, W., Introduction to Intersection Theory in Algebraic Geometry, CBMS Reg. Conf. Ser. Math., vol. 54 (1984), American Mathematical Society: American Mathematical Society Providence, RI
[14] Gasull, A.; Guillamon, A.; Villadelprat, J., The period function for second-order quadratic ODEs is monotone, Qual. Theory Dyn. Syst., 5, 201-224 (2004)
[15] Gasull, A.; Yu, Jiang, On the critical periods of perturbed isochronous centers, J. Differential Equations, 244, 696-715 (2008) · Zbl 1143.34024
[16] Gasull, A.; Zhao, Yulin, Bifurcation of critical periods from the rigid quadratic isochronous vector field, Bull. Sci. Math., 132, 292-312 (2008) · Zbl 1160.34035
[17] Gavrilov, L., The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math., 143, 449-497 (2001) · Zbl 0979.34024
[18] Gavrilov, L., Cyclicity of period annuli and principalization of Bautin ideals, Ergodic Theory Dynam. Systems, 28, 1497-1507 (2008) · Zbl 1172.37020
[19] Grau, M.; Mañosas, F.; Villadelprat, J., A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363, 109-129 (2011) · Zbl 1217.34052
[20] Grau, M.; Villadelprat, J., Bifurcation of critical periods from Pleshkan’s isochrones, J. Lond. Math. Soc., 81, 142-160 (2010) · Zbl 1196.34048
[21] Greuel, G.-M.; Lossen, C.; Shustin, E., Introduction to Singularities and Deformations, Springer Monogr. Math. (2007), Springer: Springer Berlin · Zbl 1125.32013
[22] Karlin, S.; Studden, W., Tchebycheff Systems: With Applications in Analysis and Statistics (1966), Interscience Publishers · Zbl 0153.38902
[23] Liang, Hai Hua; Zhao, Yun Lin, On the period function of a class of reversible quadratic centers, Acta Math. Sin. (Engl. Ser.), 27, 905-918 (2011) · Zbl 1226.34034
[24] Liang, Hai Hua; Zhao, Yulin, On the period function of reversible quadratic centers with their orbits inside quartics, Nonlinear Anal., 71, 5655-5671 (2009) · Zbl 1182.34059
[25] Mardešić, P.; Moser-Jauslin, L.; Rousseau, C., Darboux linearization and isochronous centers with a rational first integral, J. Differential Equations, 134, 216-268 (1997) · Zbl 0881.34041
[26] Mardešić, P.; Marín, D.; Villadelprat, J., On the time function of the Dulac map for families of meromorphic vector fields, Nonlinearity, 16, 855-881 (2003) · Zbl 1034.34037
[27] Mardešić, P.; Marín, D.; Villadelprat, J., The period function of reversible quadratic centers, J. Differential Equations, 224, 120-171 (2006) · Zbl 1092.34020
[28] Mañosas, F.; Villadelprat, J., The bifurcation set of the period function of the dehomogenized Loud’s centers is bounded, Proc. Amer. Math. Soc., 136, 1631-1642 (2008) · Zbl 1165.34017
[29] Mañosas, F.; Villadelprat, J., Criteria to bound the number of critical periods, J. Differential Equations, 246, 2415-2433 (2009) · Zbl 1171.34022
[30] Mañosas, F.; Villadelprat, J., Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 251, 1656-1669 (2011) · Zbl 1237.34039
[31] Roussarie, R., Bifurcation of Planar Vector Fields and Hilbert’s Sixteenth Problem, Progr. Math., vol. 164 (1998), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0898.58039
[32] Sáez, E.; Szántó, I., One-parameter family of cubic Kolmogorov system with an isochronous center, Collect. Math., 48, 297-301 (1997) · Zbl 0892.34021
[33] Schaaf, R., A class of Hamiltonian systems with increasing periods, J. Reine Angew. Math., 363, 96-109 (1985) · Zbl 0565.34037
[34] Villadelprat, J., On the reversible quadratic centers with monotonic period function, Proc. Amer. Math. Soc., 135, 2555-2565 (2007), (electronic) · Zbl 1122.34024
[35] Zhao, Y., The monotonicity of period function for codimension four quadratic system \(Q_4\), J. Differential Equations, 185, 370-387 (2002) · Zbl 1047.34024
[36] Zhao, Yulin, On the monotonicity of the period function of a quadratic system, Discrete Contin. Dyn. Syst., 13, 795-810 (2005) · Zbl 1089.34038
[37] Zhao, Yulin, The period function for quadratic integrable systems with cubic orbits, J. Math. Anal. Appl., 301, 295-312 (2005) · Zbl 1068.34030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.