×

Variational properties and orbital stability of standing waves for NLS equation on a star graph. (English) Zbl 1300.35129

Summary: We study standing waves for a nonlinear Schrödinger equation on a star graph \(\mathcal{G}\), i.e. \( N\) halflines joined at a vertex. At the vertex an interaction occurs described by a boundary condition of delta type with strength \(\alpha \leqslant 0\). The nonlinearity is of focusing power type. The dynamics is given by an equation of the form \(i \frac{d}{d t} \Psi_t = H \Psi_t - | \Psi_t |^{2 \mu} \Psi_t\), where \(H\) is the Hamiltonian operator which generates the linear Schrödinger dynamics. We show the existence of several families of standing waves for every sign of the coupling at the vertex for every \(\omega > \frac{\alpha^2}{N^2}\). Furthermore, we determine the ground states, as minimizers of the action on the Nehari manifold, and order the various families. Finally, we show that the ground states are orbitally stable for every allowed \(\omega\) if the nonlinearity is subcritical or critical, and for \(\omega < \omega^\ast\) otherwise.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
37K45 Stability problems for infinite-dimensional Hamiltonian and Lagrangian systems
35C08 Soliton solutions

References:

[1] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., Fast solitons on star graphs, Rev. Math. Phys., 23, 4, 409-451 (2011) · Zbl 1222.35182
[2] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., Stationary states of NLS on star graphs, Europhys. Lett., 100, 10003 (2012)
[3] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., On the structure of critical energy levels for the cubic focusing NLS on star graphs, J. Phys. A, 45, 192001 (2012), 7 pp · Zbl 1247.81104
[4] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., Constrained energy minimization and orbital stability for the NLS equation on a star graph, in press · Zbl 1304.81087
[5] Adami, R.; Noja, D., Existence of dynamics for a 1D NLS equation perturbed with a generalized point defect, J. Phys. A, 42, 49, 495302 (2009), 19 pp · Zbl 1184.35290
[6] Adami, R.; Noja, D., Stability and symmetry breaking bifurcation for the ground states of a NLS equation with a \(\delta^\prime\) interaction, Comm. Math. Phys., 318, 247-289 (2013) · Zbl 1260.35194
[7] Adami, R.; Noja, D.; Sacchetti, A., Bose-Einstein Condensates: Theory, Characteristics, and Current Research (2010), Nova Publishing: Nova Publishing New York
[8] Adami, R.; Noja, D.; Visciglia, N., Constrained energy minimization and ground states for NLS with point defects, Discrete Contin. Dyn. Syst. Ser. B, 18, 5, 1155-1188 (2013) · Zbl 1280.35132
[9] Adami, R.; Serra, E.; Tilli, P., Lack of ground state for NLS on bridge-type graphs (2014)
[10] Adami, R.; Serra, E.; Tilli, P., NLS ground states on graphs (2014)
[11] Albeverio, S.; Gesztesy, F.; Høgh-Krohn, R.; Holden, H., Solvable Models in Quantum Mechanics (2005), AMS Chelsea Publ., with an Appendix by P. Exner · Zbl 1078.81003
[12] Banica, V.; Ignat, L., Dispersion for the Schrödinger equation on networks, J. Math. Phys., 52, 083703 (2011) · Zbl 1272.81079
[13] Banica, V.; Ignat, L., Dispersion for the Schrödinger equation on the line with multiple Dirac delta potentials and on delta trees (2014), to appear in Anal. PDE · Zbl 1297.35200
[14] Berkolaiko, G.; Carlson, R.; Fulling, S.; Kuchment, P., Quantum Graphs and their Applications, Contemp. Math., vol. 415 (2006), American Math. Soc.: American Math. Soc. Providence, RI · Zbl 1098.81007
[15] Berkolaiko, G.; Kuchment, P., Introduction to Quantum Graphs (2013), American Math. Society · Zbl 1318.81005
[16] Blank, J.; Exner, P.; Havlicek, M., Hilbert Space Operators in Quantum Physics (2008), Springer: Springer New York · Zbl 1163.47060
[17] Brezis, H.; Lieb, E. H., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037
[18] Cacciapuoti, C.; Finco, D.; Noja, D., Topology induced bifurcations for the NLS on the tadpole graph (2014)
[19] Cao Xiang, D.; Malomed, A. B., Soliton defect collisions in the nonlinear Schrödinger equation, Phys. Lett. A, 206, 177-182 (1995) · Zbl 1020.78505
[20] Cazenave, T., Semilinear Schrödinger Equations, Courant Lect. Notes Math., vol. 10 (2003), AMS: AMS Providence · Zbl 1055.35003
[21] Cazenave, T.; Lions, P.-L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85, 549-561 (1982) · Zbl 0513.35007
[22] Exner, P.; Keating, J. P.; Kuchment, P.; Sunada, T.; Teplyaev, A., Analysis on Graphs and Its Applications, Proc. Sympos. Pure Math., vol. 77 (2008), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1143.05002
[23] Friedlander, L., Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier (Grenoble), 55 1, 199-211 (2005) · Zbl 1074.34078
[24] Fröhlich, J.; Gustafson, S.; Jonsson, B. L.G.; Sigal, I., Solitary wave dynamics in an external potential, Comm. Math. Phys., 250, 613-642 (2004) · Zbl 1075.35075
[25] Fukuizumi, R.; Ohta, M.; Ozawa, T., Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25, 5, 837-845 (2008) · Zbl 1145.35457
[26] Gnutzman, S.; Smilansky, U.; Derevyanko, S., Stationary scattering from a nonlinear network, Phys. Rev. A, 83, 033831 (2011)
[27] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74, 160-197 (1987) · Zbl 0656.35122
[28] Grillakis, M.; Shatah, J.; Strauss, W., Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal., 94, 308-348 (1990) · Zbl 0711.58013
[29] Hildén, K., Symmetrization of functions in Sobolev spaces and the isoperimetric inequality, Manuscripta Math., 18, 3, 215-235 (1976) · Zbl 0365.46031
[30] Kawohl, B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math., vol. 1150 (1985), Springer-Verlag: Springer-Verlag Berlin · Zbl 0593.35002
[31] Kostrykin, V.; Schrader, R., Kirchhoff’s rule for quantum wires, J. Phys. A: Math. Gen., 32, 4, 595-630 (1999) · Zbl 0928.34066
[32] Kuchment, P., Quantum graphs. I. Some basic structures, Waves Random Media, 14, 1, S107-S128 (2004) · Zbl 1063.81058
[33] Kuchment, P., Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A: Math. Gen., 38, 22, 4887-4900 (2005) · Zbl 1070.81062
[34] Le Coz, S.; Fukuizumi, R.; Fibich, G.; Ksherim, B.; Sivan, Y., Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential, Phys. D, 237, 8, 1103-1128 (2008) · Zbl 1147.35356
[35] Lieb, E. H.; Loss, M., Analysis, Grad. Stud. Math., vol. 14 (2001), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0966.26002
[36] Linzon, Y.; Morandotti, R.; Volatier, M.; Aimez, V.; Ares, R.; Bar-Ad, S., Nonlinear scattering and trapping by local photonic potentials, Phys. Rev. Lett., 99, 133901 (2007)
[37] Miroshnichenko, A. E.; Molina, M. I.; Kivshar, Y. S., Localized modes and bistable scattering in nonlinear network junctions, Phys. Rev. E, 75, 046602 (2007)
[38] Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M., Inequalities Involving Functions and their Integrals and Derivatives, Math. Appl., vol. 53 (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht/Boston/London · Zbl 0744.26011
[39] Peccianti, M.; Dyadyusha, A.; Kaczmarek, M.; Assanto, G., Escaping solitons from a trapping potential, Phys. Rev. Lett., 101, 153902 (2008)
[40] Sobirov, Z.; Matrasulov, D.; Sabirov, K.; Sawada, S.; Nakamura, K., Integrable nonlinear Schrödinger equation on simple networks: connection formula at vertices, Phys. Rev. E, 81, 066602 (2010)
[41] Tokuno, A.; Oshikawa, M.; Demler, E., Dynamics of the one dimensional Bose liquids: Andreev-like reflection at \(Y\)-junctions and the absence of Aharonov-Bohm effect, Phys. Rev. Lett., 100, 140402 (2008)
[42] Wan, W.; Muenzel, S.; Fleischer, J. W., Wave tunneling and hysteresis in nonlinear junctions, Phys. Rev. Lett., 104, 073903 (2010)
[43] Weinstein, M., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16, 472-491 (1985) · Zbl 0583.35028
[44] Weinstein, M., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39, 51-68 (1986) · Zbl 0594.35005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.