×

Blow-up and strong instability of standing waves for the NLS-\(\delta\) equation on a star graph. (English) Zbl 1464.35322

The present paper is devoted to study the strong instability of the standing wave solutions the NLS [N. Fukaya and M. Ohta, Osaka J. Math. 56, No. 4, 713–726 (2019; Zbl 1431.35172)] equation with \(\delta\)-interaction on a star graph \(\Gamma\) \[ i\partial_{t}U(t,x)-HU(t,x)+F(U(t,x))U(t,x)=0,\tag{1} \] where \(U(t,x)=(u_{j}(t,x))_{j=1}^{N}:\mathbb{R}\times\mathbb{R}_{+}\rightarrow\mathbb{C}^{N}\), \(F(U(t,x)))=(f_{ij})\), \(i,j=1,\dots,N\) is a diagonal matrix with \(f_{ii}=\left\vert u_{i}\right\vert^{p-1}\), \(p>1\), and \(f_{ij}=0\) if \(i\neq j\), and \(H\) is the self-adjoint operator on \(L^{2}(\Gamma)\) given by \[ \begin{aligned} (HU)(x)& =(-\partial_{x}^{2} u_{j}(x))_{j=1}^{N},\ x>0,\\ D(H)& =\{U\in H^{2}(\Gamma):u_{1}(0)=\dots=u_{N}(0),\sum_{j=1}^{N}u_{j}^{\prime}(0)=\alpha u_{1}(0)\}. \end{aligned}\tag{2} \] Condition (2) is an analog of \(\delta\)-interaction condition for the Schrödinger operator on the line. Let \(U(t,x)=e^{i\omega t}\Phi(x)\) be the standing wave solution, where \(\Phi\) satisfies the stationary equation \[ H\Phi+\omega\Phi-F(\Phi)\Phi=0. \] It is known that the last equation has \([\frac{N-1}{2}]+1\) explicit vector solutions \(\Phi_{k}^{\alpha}=(\varphi_{k,j}^{\alpha})_{j=1}^{N}\), \(k=0,\dots,[\frac{N-1}{2}]\). The authors prove strong instability for \(\Phi_{0}^{\alpha}\). More precisely, in Theorem 1.3 they show that if \(\alpha>0\), \(\omega>\frac{\alpha^{2}}{N^{2}}\) and \(p\geq5\), then \(e^{i\omega t}\Phi_{0}^{\alpha}(x)\) is strongly unstable. Moreover, Theorem 1.4 shows that if \(\alpha<0\), \(p>5\), \(\omega>\frac{\alpha^{2}}{N^{2}}\), \(e^{i\omega t}\Phi_{0}^{\alpha}(x)\) is strongly unstable for all \(\omega\in\lbrack\omega_{1},\infty)\), where \(\omega_{1}=\omega_{1}(p,\alpha)\) can be computed from a given integral equation. In order to prove the above theorems the authors use the ideas of [N. Fukaya and M. Ohta, Osaka J. Math. 56, No. 4, 713–726 (2019; Zbl 1431.35172); M. Ohta, São Paulo J. Math. Sci. 13, No. 2, 465–474 (2019; Zbl 1433.35368)]. The essential ingredients are the virial identity for the NLS-\(\delta\) equation on \(\Gamma\) and a novel variational technique applied to the standing wave solutions being minimizers of a specific variational problem.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
37K45 Stability problems for infinite-dimensional Hamiltonian and Lagrangian systems
47E05 General theory of ordinary differential operators
35B44 Blow-up in context of PDEs
35B35 Stability in context of PDEs

References:

[1] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., Variational properties and orbital stability of standing waves for NLS equation on a star graph, J. Differential Equations, 257, 10, 3738-3777 (2014) · Zbl 1300.35129
[2] Adami, R.; Cacciapuoti, C.; Finco, D.; Noja, D., Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy, J. Differential Equations, 260, 10, 7397-7415 (2016) · Zbl 1336.35316
[3] Adami, R.; Noja, D., Stability and symmetry-breaking bifurcation for the ground states of a NLS with a \(\delta^\prime\) interaction, Comm. Math. Phys., 318, 1, 247-289 (2013) · Zbl 1260.35194
[4] Albeverio, S.; Brzezniak, Z.; Dabrowski, L., Fundamental solution of the heat and Schrödinger equations with point interaction, J. Funct. Anal., 130, 220-254 (1995) · Zbl 0822.35002
[5] Albeverio, S.; Gesztesy, F.; Hoegh-Krohn, R.; Holden, H., Solvable Models in Quantum Mechanics (2005), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI · Zbl 1078.81003
[6] Angulo, J.; Goloshchapova, N., Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph, Adv. Differential Equations, 23, 793-846 (2018) · Zbl 1402.35261
[7] Angulo, J.; Goloshchapova, N., On the orbital instability of excited states for the NLS equation with the \(\delta \)-interaction on a star graph, Discrete Contin. Dyn. Syst., 38, 10, 5039-5066 (2018) · Zbl 1397.35288
[8] Banica, V.; Ignat, L. I., Dispersion for the Schrödinger equation on the line with multiple Dirac delta potentials and on delta trees, Anal. Partial Differ. Equ., 7, 4, 903-927 (2014) · Zbl 1297.35200
[9] Berestycki, H.; Cazenave, T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris I, 293, 489-492 (1981) · Zbl 0492.35010
[10] Cacciapuoti, C.; Finco, D.; Noja, D., Ground state and orbital stability for the NLS equation on a general starlike graph with potentials, Nonlinearity, 30, 3271-3303 (2017) · Zbl 1373.35284
[11] Cazenave, T., (Semilinear Schrödinger Equations. Semilinear Schrödinger Equations, Courant Lect. Notes in Math., vol. 10 (2003), New York University, Courant Institute of Mathematical Sciences, Amer. Math. Soc.: New York University, Courant Institute of Mathematical Sciences, Amer. Math. Soc. New York, Providence, RI) · Zbl 1055.35003
[12] N. Fukaya, M. Ohta, Strong instablity of standing waves for nonlinear Schrödinger equations with attractive inverse power potential, preprint, arXiv:1804.02127. · Zbl 1431.35172
[13] Fukuizumi, R.; Jeanjean, L., Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential, Discrete Contin. Dyn. Syst., 21, 1, 121-136 (2008) · Zbl 1144.35465
[14] Fukuizumi, R.; Ohta, M.; Ozawa, T., Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25, 5, 837-845 (2008) · Zbl 1145.35457
[15] Kairzhan, A., Orbital instability of standing waves for NLS equation on star graphs, Proc. Amer. Math. Soc., 147, 2911-2924 (2019) · Zbl 1420.35363
[16] Le Coz, S., A note on Berestycki-Cazenave’s classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud., 8, 455-463 (2008) · Zbl 1156.35092
[17] Le Coz, S.; Fukuizumi, R.; Fibich, G.; Ksherim, B.; Sivan, Y., Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential, Physica D, 237, 1103-1128 (2008) · Zbl 1147.35356
[18] Ohta, M., Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac., 61, 135-143 (2018) · Zbl 1434.35187
[19] Ohta, M., Instability of standing waves for nonlinear Schrödinger equations with delta potential, Sao Paulo J. Math. Sci., 13, 465-474 (2019) · Zbl 1433.35368
[20] Ohta, M.; Yamaguchi, T., Strong instability of standing waves for nonlinear Schrödinger equations with double power nonlinearity, SUT J. Math., 51, 49-58 (2015) · Zbl 1337.35138
[21] Ohta, M.; Yamaguchi, T., Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential, RIMS Kokyuroku Bessatsu B, 56, 79-92 (2016) · Zbl 1361.35167
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.