×

Anisotropic separate universe and Weinberg’s adiabatic mode. (English) Zbl 1485.83017

Summary: In the separate universe approach, an inhomogeneous universe is rephrased as a set of glued numerous homogeneous local patches. This is the essence of the gradient expansion and the \(\delta N\) formalism, which have been widely used in solving a long wavelength evolution of the universe. In this paper, we show that the separate universe approach can be generically used, as long as a theory under consideration is local and preserves the spatial diffeomorphism invariance. Focusing on these two conditions, we also clarify the condition for the existence of the so-called Weinberg’s adiabatic mode. Remarkably, the separate universe approach and the \(\delta N\) formalism turn out to be applicable also to models with shear on large scales and also to modified theories of gravity, accepting violation of four-dimensional diffeomorphism invariance. The generalized \(\delta N\) formalism enables us to calculate all the large scale fluctuations, including gravitational waves. We also argue several implications on anisotropic inflation and ultra slow-roll inflation.

MSC:

83C35 Gravitational waves
83F05 Relativistic cosmology
35B20 Perturbations in context of PDEs
54E45 Compact (locally compact) metric spaces

References:

[1] Salopek, D. S.; Bond, J. R., Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev. D, 42, 3936-3962 (1990) · doi:10.1103/PhysRevD.42.3936
[2] Shibata, Masaru; Sasaki, Misao, Black hole formation in the Friedmann universe: Formulation and computation in numerical relativity, Phys. Rev. D, 60 (1999) · doi:10.1103/PhysRevD.60.084002
[3] Deruelle, Nathalie; Langlois, David, Long wavelength iteration of Einstein’s equations near a space-time singularity, Phys. Rev. D, 52, 2007-2019 (1995) · doi:10.1103/PhysRevD.52.2007
[4] Wands, David; Malik, Karim A.; Lyth, David H.; Liddle, Andrew R., A New approach to the evolution of cosmological perturbations on large scales, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.043527
[5] Lyth, David H.; Malik, Karim A.; Sasaki, Misao, A General proof of the conservation of the curvature perturbation, JCAP, 05 (2005) · Zbl 1236.83043 · doi:10.1088/1475-7516/2005/05/004
[6] Starobinsky, Alexei A., Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. B, 117, 175-178 (1982) · doi:10.1016/0370-2693(82)90541-X
[7] Starobinsky, Alexei A., Multicomponent de Sitter (Inflationary) Stages and the Generation of Perturbations, JETP Lett., 42, 152-155 (1985)
[8] Sasaki, Misao; Stewart, Ewan D., A General analytic formula for the spectral index of the density perturbations produced during inflation, Prog. Theor. Phys., 95, 71-78 (1996) · doi:10.1143/PTP.95.71
[9] Sasaki, Misao; Tanaka, Takahiro, Superhorizon scale dynamics of multiscalar inflation, Prog. Theor. Phys., 99, 763-782 (1998) · doi:10.1143/PTP.99.763
[10] Tanaka, Yoshiharu; Sasaki, Misao, Gradient expansion approach to nonlinear superhorizon perturbations, Prog. Theor. Phys., 117, 633-654 (2007) · Zbl 1135.83014 · doi:10.1143/PTP.117.633
[11] Weinberg, Steven, Non-Gaussian Correlations Outside the Horizon, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.123521
[12] Weinberg, Steven, Non-Gaussian Correlations Outside the Horizon II: The General Case, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.043504
[13] Takamizu, Yu-ichi; Mukohyama, Shinji; Sasaki, Misao; Tanaka, Yoshiharu, Non-Gaussianity of superhorizon curvature perturbations beyond δ N formalism, JCAP, 06 (2010) · doi:10.1088/1475-7516/2010/06/019
[14] Naruko, Atsushi; Takamizu, Yu-ichi; Sasaki, Misao, Beyond δN formalism, PTEP, 2013 (2013) · Zbl 07406656 · doi:10.1093/ptep/ptt008
[15] Ratra, Bharat, Cosmological “seed” magnetic field from inflation, Astrophys. J. Lett., 391, L1-L4 (1992) · doi:10.1086/186384
[16] R.R. Caldwell, L. Motta and M. Kamionkowski, Correlation of inflation-produced magnetic fields with scalar fluctuations, Phys. Rev. D84 (2011).
[17] Martin, Jerome; Yokoyama, Jun’ichi, Generation of Large-Scale Magnetic Fields in Single-Field Inflation, JCAP, 01 (2008) · doi:10.1088/1475-7516/2008/01/025
[18] Turner, Michael S.; Widrow, Lawrence M., Inflation Produced, Large Scale Magnetic Fields, Phys. Rev. D, 37, 2743 (1988) · doi:10.1103/PhysRevD.37.2743
[19] Demozzi, Vittoria; Mukhanov, Viatcheslav; Rubinstein, Hector, Magnetic fields from inflation?, JCAP, 08 (2009) · doi:10.1088/1475-7516/2009/08/025
[20] Watanabe, Masa-aki; Kanno, Sugumi; Soda, Jiro, Inflationary Universe with Anisotropic Hair, Phys. Rev. Lett., 102 (2009) · Zbl 1197.83133 · doi:10.1103/PhysRevLett.102.191302
[21] Watanabe, Masa-aki; Kanno, Sugumi; Soda, Jiro, The Nature of Primordial Fluctuations from Anisotropic Inflation, Prog. Theor. Phys., 123, 1041-1068 (2010) · Zbl 1197.83133 · doi:10.1143/PTP.123.1041
[22] Kanno, Sugumi; Soda, Jiro; Watanabe, Masa-aki, Anisotropic Power-law Inflation, JCAP, 12 (2010) · Zbl 1197.83133 · doi:10.1088/1475-7516/2010/12/024
[23] Soda, Jiro, Statistical Anisotropy from Anisotropic Inflation, Class. Quant. Grav., 29 (2012) · Zbl 1241.83006 · doi:10.1088/0264-9381/29/8/083001
[24] Wald, Robert M., Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant, Phys. Rev. D, 28, 2118-2120 (1983) · Zbl 0959.83064 · doi:10.1103/PhysRevD.28.2118
[25] Cheung, Clifford; Creminelli, Paolo; Fitzpatrick, A. Liam; Kaplan, Jared; Senatore, Leonardo, The Effective Field Theory of Inflation, JHEP, 03, 014 (2008) · doi:10.1088/1126-6708/2008/03/014
[26] Gong, Jinn-Ouk; Noumi, Toshifumi; Shiu, Gary; Soda, Jiro; Takahashi, Kazufumi; Yamaguchi, Masahide, Effective Field Theory of Anisotropic Inflation and Beyond, JCAP, 08 (2020) · Zbl 1492.83095 · doi:10.1088/1475-7516/2020/08/027
[27] Graham, Peter W.; Mardon, Jeremy; Rajendran, Surjeet, Vector Dark Matter from Inflationary Fluctuations, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.103520
[28] Nakayama, Kazunori, Vector Coherent Oscillation Dark Matter, JCAP, 10 (2019) · Zbl 1515.81218 · doi:10.1088/1475-7516/2019/10/019
[29] Kehagias, Alex; Riotto, Antonio, On the Inflationary Perturbations of Massive Higher-Spin Fields, JCAP, 07 (2017) · Zbl 1371.83209 · doi:10.1088/1475-7516/2017/07/046
[30] Arkani-Hamed, Nima; Maldacena, Juan, Cosmological Collider Physics (2015)
[31] Lee, Hayden; Baumann, Daniel; Pimentel, Guilherme L., Non-Gaussianity as a Particle Detector, JHEP, 12, 040 (2016) · Zbl 1390.83465 · doi:10.1007/JHEP12(2016)040
[32] Ghosh, Archisman; Kundu, Nilay; Raju, Suvrat; Trivedi, Sandip P., Conformal Invariance and the Four Point Scalar Correlator in Slow-Roll Inflation, JHEP, 07, 011 (2014) · doi:10.1007/JHEP07(2014)011
[33] Planck Collaboration; Akrami, Y., Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys., 641, A9 (2020) · doi:10.1051/0004-6361/201935891
[34] Bartolo, Nicola; Kehagias, Alex; Liguori, Michele; Riotto, Antonio; Shiraishi, Maresuke; Tansella, Vittorio, Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.023503
[35] Bordin, Lorenzo; Cabass, Giovanni, Probing higher-spin fields from inflation with higher-order statistics of the CMB, JCAP, 06 (2019) · Zbl 1541.83121 · doi:10.1088/1475-7516/2019/06/050
[36] Franciolini, Gabriele; Kehagias, Alex; Riotto, Antonio; Shiraishi, Maresuke, Detecting higher spin fields through statistical anisotropy in the CMB bispectrum, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.043533
[37] Moradinezhad Dizgah, Azadeh; Franciolini, Gabriele; Kehagias, Alex; Riotto, Antonio, Constraints on long-lived, higher-spin particles from galaxy bispectrum, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.063520
[38] Moradinezhad Dizgah, Azadeh; Lee, Hayden; Muñoz, Julian B.; Dvorkin, Cora, Galaxy Bispectrum from Massive Spinning Particles, JCAP, 05 (2018) · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/05/013
[39] Schmidt, Fabian; Chisari, Nora Elisa; Dvorkin, Cora, Imprint of inflation on galaxy shape correlations, JCAP, 10 (2015) · doi:10.1088/1475-7516/2015/10/032
[40] Chisari, Nora Elisa; Dvorkin, Cora; Schmidt, Fabian; Spergel, David, Multitracing Anisotropic Non-Gaussianity with Galaxy Shapes, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.123507
[41] Kogai, Kazuhiro; Matsubara, Takahiko; Nishizawa, Atsushi J.; Urakawa, Yuko, Intrinsic galaxy alignment from angular dependent primordial non-Gaussianity, JCAP, 08 (2018) · Zbl 1536.83185 · doi:10.1088/1475-7516/2018/08/014
[42] Kogai, Kazuhiro; Akitsu, Kazuyuki; Schmidt, Fabian; Urakawa, Yuko, Galaxy imaging surveys as spin-sensitive detector for cosmological colliders, JCAP, 03 (2021) · Zbl 1484.85015 · doi:10.1088/1475-7516/2021/03/060
[43] Karciauskas, Mindaugas; Dimopoulos, Konstantinos; Lyth, David H., Anisotropic non-Gaussianity from vector field perturbations, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.023509
[44] Abolhasani, Ali Akbar; Emami, Razieh; Firouzjaee, Javad T.; Firouzjahi, Hassan, δ N formalism in anisotropic inflation and large anisotropic bispectrum and trispectrum, JCAP, 08 (2013) · doi:10.1088/1475-7516/2013/08/016
[45] Sugiyama, Naonori S.; Komatsu, Eiichiro; Futamase, Toshifumi, δN formalism, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.023530
[46] Garriga, Jaume; Urakawa, Yuko; Vernizzi, Filippo, δ N formalism from superpotential and holography, JCAP, 02 (2016) · doi:10.1088/1475-7516/2016/02/036
[47] Izumi, Keisuke; Mukohyama, Shinji, Nonlinear superhorizon perturbations in Horava-Lifshitz gravity, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.064025
[48] Gumrukcuoglu, A. Emir; Mukohyama, Shinji; Wang, Anzhong, General relativity limit of Horava-Lifshitz gravity with a scalar field in gradient expansion, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.064042
[49] Weinberg, Steven, Adiabatic modes in cosmology, Phys. Rev. D, 67 (2003) · doi:10.1103/PhysRevD.67.123504
[50] Horava, Petr, Quantum Gravity at a Lifshitz Point, Phys. Rev. D, 79 (2009) · Zbl 1225.83033 · doi:10.1103/PhysRevD.79.084008
[51] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[52] Endlich, Solomon; Nicolis, Alberto; Wang, Junpu, Solid Inflation, JCAP, 10 (2013) · doi:10.1088/1475-7516/2013/10/011
[53] Garriga, Jaume; Montes, Xavier; Sasaki, Misao; Tanaka, Takahiro, Spectrum of cosmological perturbations in the one bubble open universe, Nucl. Phys. B, 551, 317-373 (1999) · doi:10.1016/S0550-3213(99)00181-9
[54] Linde, Andrei D.; Sasaki, Misao; Tanaka, Takahiro, CMB in open inflation, Phys. Rev. D, 59 (1999) · Zbl 0962.83017 · doi:10.1103/PhysRevD.59.123522
[55] Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad; Noreña, Jorge, Solid Consistency, JCAP, 03 (2017) · Zbl 1515.83309 · doi:10.1088/1475-7516/2017/03/004
[56] Blas, Diego; Pujolas, Oriol; Sibiryakov, Sergey, Models of non-relativistic quantum gravity: The Good, the bad and the healthy, JHEP, 04, 018 (2011) · Zbl 1250.83031 · doi:10.1007/JHEP04(2011)018
[57] Barvinsky, Andrei O.; Blas, Diego; Herrero-Valea, Mario; Sibiryakov, Sergey M.; Steinwachs, Christian F., Renormalization of Hořava gravity, Phys. Rev. D, 93 (2016) · Zbl 1395.83024 · doi:10.1103/PhysRevD.93.064022
[58] Barvinsky, Andrei O.; Blas, Diego; Herrero-Valea, Mario; Sibiryakov, Sergey M.; Steinwachs, Christian F., Renormalization of gauge theories in the background-field approach, JHEP, 07, 035 (2018) · Zbl 1395.83024 · doi:10.1007/JHEP07(2018)035
[59] Armendariz-Picon, Cristian; Sierra, Noela Farina; Garriga, Jaume, Primordial Perturbations in Einstein-Aether and BPSH Theories, JCAP, 07 (2010) · doi:10.1088/1475-7516/2010/07/010
[60] Arai, Shun; Sibiryakov, Sergey; Urakawa, Yuko, Inflationary perturbations with Lifshitz scaling, JCAP, 03 (2019) · Zbl 1541.83108 · doi:10.1088/1475-7516/2019/03/034
[61] Kobayashi, Tsutomu; Urakawa, Yuko; Yamaguchi, Masahide, Cosmological perturbations in a healthy extension of Horava gravity, JCAP, 04 (2010) · doi:10.1088/1475-7516/2010/04/025
[62] Buoninfante, Luca; Lambiase, Gaetano; Yamaguchi, Masahide, Nonlocal generalization of Galilean theories and gravity, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.026019
[63] Pajer, Enrico, Building a Boostless Bootstrap for the Bispectrum, JCAP, 01 (2021) · Zbl 1484.83018 · doi:10.1088/1475-7516/2021/01/023
[64] Starobinsky, Alexei A., STOCHASTIC DE SITTER (INFLATIONARY) STAGE IN THE EARLY UNIVERSE, Lect. Notes Phys., 246, 107-126 (1986) · doi:10.1007/3-540-16452-9_6
[65] Nambu, Yasusada; Sasaki, Misao, Stochastic Stage of an Inflationary Universe Model, Phys. Lett. B, 205, 441-446 (1988) · doi:10.1016/0370-2693(88)90974-4
[66] Nambu, Yasusada; Sasaki, Misao, Stochastic Approach to Chaotic Inflation and the Distribution of Universes, Phys. Lett. B, 219, 240-246 (1989) · doi:10.1016/0370-2693(89)90385-7
[67] Starobinsky, Alexei A.; Yokoyama, Junichi, Equilibrium state of a selfinteracting scalar field in the De Sitter background, Phys. Rev. D, 50, 6357-6368 (1994) · doi:10.1103/PhysRevD.50.6357
[68] Tokuda, Junsei; Tanaka, Takahiro, Statistical nature of infrared dynamics on de Sitter background, JCAP, 02 (2018) · Zbl 1527.83172 · doi:10.1088/1475-7516/2018/02/014
[69] Gorbenko, Victor; Senatore, Leonardo, λϕ^4 in dS (2019)
[70] Baumgart, Matthew; Sundrum, Raman, De Sitter Diagrammar and the Resummation of Time, JHEP, 07, 119 (2020) · doi:10.1007/JHEP07(2020)119
[71] T. Tanaka and Y. Urakawa, in preparation.
[72] Emami, Razieh; Firouzjahi, Hassan; Movahed, M. Sadegh, Inflation from Charged Scalar and Primordial Magnetic Fields?, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.083526
[73] de Rham, Claudia; Gabadadze, Gregory, Generalization of the Fierz-Pauli Action, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.044020
[74] de Rham, Claudia; Gabadadze, Gregory; Tolley, Andrew J., Resummation of Massive Gravity, Phys. Rev. Lett., 106 (2011) · Zbl 1306.83062 · doi:10.1103/PhysRevLett.106.231101
[75] Talebian-Ashkezari, Alireza; Ahmadi, Nahid; Abolhasani, Ali Akbar, δ M formalism: a new approach to cosmological perturbation theory in anisotropic inflation, JCAP, 03 (2018) · Zbl 1530.83061 · doi:10.1088/1475-7516/2018/03/001
[76] Tanaka, Takahiro; Urakawa, Yuko, Dominance of gauge artifact in the consistency relation for the primordial bispectrum, JCAP, 05 (2011) · Zbl 1223.83061 · doi:10.1088/1475-7516/2011/05/014
[77] Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca, Soft Theorems For Shift-Symmetric Cosmologies, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.063531
[78] Pajer, Enrico; Jazayeri, Sadra, Systematics of Adiabatic Modes: Flat Universes, JCAP, 03 (2018) · Zbl 1530.83054 · doi:10.1088/1475-7516/2018/03/013
[79] Jazayeri, Sadra; Pajer, Enrico; van der Woude, Drian, Solid Soft Theorems, JCAP, 06 (2019) · Zbl 1481.83111 · doi:10.1088/1475-7516/2019/06/011
[80] Kobayashi, Tsutomu; Urakawa, Yuko; Yamaguchi, Masahide, Large scale evolution of the curvature perturbation in Horava-Lifshitz cosmology, JCAP, 11 (2009) · doi:10.1088/1475-7516/2009/11/015
[81] Tanaka, Takahiro; Urakawa, Yuko, Large gauge transformation, Soft theorem, and Infrared divergence in inflationary spacetime, JHEP, 10, 127 (2017) · Zbl 1383.85018 · doi:10.1007/JHEP10(2017)127
[82] Blas, D.; Pujolas, O.; Sibiryakov, S., Consistent Extension of Horava Gravity, Phys. Rev. Lett., 104 (2010) · doi:10.1103/PhysRevLett.104.181302
[83] Gleyzes, Jérôme; Langlois, David; Piazza, Federico; Vernizzi, Filippo, Healthy theories beyond Horndeski, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.211101
[84] Shibata, Masaru; Asada, Hideki, PostNewtonian equations of motion in the flat universe, Prog. Theor. Phys., 94, 11-31 (1995) · doi:10.1143/PTP.94.11
[85] Kodama, Hideo; Sasaki, Misao, Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl., 78, 1-166 (1984) · doi:10.1143/PTPS.78.1
[86] Grain, Julien; Vennin, Vincent, Unavoidable shear from quantum fluctuations in contracting cosmologies, Eur. Phys. J. C, 81, 132 (2021) · doi:10.1140/epjc/s10052-021-08932-0
[87] Avery, Steven G.; Schwab, Burkhard U. W., Noether’s second theorem and Ward identities for gauge symmetries, JHEP, 02, 031 (2016) · Zbl 1388.83004 · doi:10.1007/JHEP02(2016)031
[88] Urakawa, Yuko; Tanaka, Takahiro, IR divergence does not affect the gauge-invariant curvature perturbation, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.121301
[89] Urakawa, Yuko; Tanaka, Takahiro, Natural selection of inflationary vacuum required by infra-red regularity and gauge-invariance, Prog. Theor. Phys., 125, 1067-1089 (2011) · Zbl 1223.83061 · doi:10.1143/PTP.125.1067
[90] Hinterbichler, Kurt; Hui, Lam; Khoury, Justin, An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology, JCAP, 01 (2014) · doi:10.1088/1475-7516/2014/01/039
[91] Matarrese, Sabino; Pilo, Luigi; Rollo, Rocco, Resilience of long modes in cosmological observables, JCAP, 01 (2021) · Zbl 1484.85017 · doi:10.1088/1475-7516/2021/01/062
[92] Gumrukcuoglu, A. E.; Contaldi, Carlo R.; Peloso, Marco, Inflationary perturbations in anisotropic backgrounds and their imprint on the CMB, JCAP, 11 (2007) · doi:10.1088/1475-7516/2007/11/005
[93] Gumrukcuoglu, A. E.; Kofman, L.; Peloso, M., Gravity Waves Signatures from Anisotropic pre-Inflation, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.103525
[94] Pereira, Thiago S.; Pitrou, Cyril; Uzan, Jean-Philippe, Theory of cosmological perturbations in an anisotropic universe, JCAP, 09 (2007) · doi:10.1088/1475-7516/2007/09/006
[95] Lyth, David H.; Wands, David, Conserved cosmological perturbations, Phys. Rev. D, 68 (2003) · doi:10.1103/PhysRevD.68.103515
[96] Tanaka, Takahiro; Suyama, Teruaki; Yokoyama, Shuichiro, Use of delta N formalism - Difficulties in generating large local-type non-Gaussianity during inflation -, Class. Quant. Grav., 27 (2010) · Zbl 1190.83130 · doi:10.1088/0264-9381/27/12/124003
[97] A.A. Abolhasani, H. Firouzjahi, A. Naruko and M. Sasaki, Basic formulation of δN formalism, World Scientific (2019), pp. 9-65.
[98] Kanno, Sugumi; Soda, Jiro; Watanabe, Masa-aki, Cosmological Magnetic Fields from Inflation and Backreaction, JCAP, 12 (2009) · Zbl 1197.83133 · doi:10.1088/1475-7516/2009/12/009
[99] Maleknejad, A.; Sheikh-Jabbari, M. M., Revisiting Cosmic No-Hair Theorem for Inflationary Settings, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.123508
[100] Tsamis, N. C.; Woodard, Richard P., Improved estimates of cosmological perturbations, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.084005
[101] Kinney, William H., Horizon crossing and inflation with large eta, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.023515
[102] Pattison, Chris; Vennin, Vincent; Assadullahi, Hooshyar; Wands, David, Stochastic inflation beyond slow roll, JCAP, 07 (2019) · Zbl 1515.83424 · doi:10.1088/1475-7516/2019/07/031
[103] Pattison, Chris; Vennin, Vincent; Wands, David; Assadullahi, Hooshyar, Ultra-slow-roll inflation with quantum diffusion (2021) · Zbl 1486.83151
[104] Garriga, Jaume; Urakawa, Yuko, Consistency relations and conservation of ζ in holographic inflation, JCAP, 10 (2016) · doi:10.1088/1475-7516/2016/10/030
[105] Namjoo, Mohammad Hossein; Firouzjahi, Hassan; Sasaki, Misao, Violation of non-Gaussianity consistency relation in a single field inflationary model, EPL, 101, 39001 (2013) · doi:10.1209/0295-5075/101/39001
[106] Maldacena, Juan Martin, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP, 05, 013 (2003) · doi:10.1088/1126-6708/2003/05/013
[107] Creminelli, Paolo; Zaldarriaga, Matias, Single field consistency relation for the 3-point function, JCAP, 10 (2004) · doi:10.1088/1475-7516/2004/10/006
[108] Urakawa, Yuko; Tanaka, Takahiro, Influence on observation from IR divergence during inflation: Multi field inflation, Prog. Theor. Phys., 122, 1207-1238 (2010) · Zbl 1186.83177 · doi:10.1143/PTP.122.1207
[109] Geshnizjani, Ghazal; Brandenberger, Robert, Back reaction and local cosmological expansion rate, Phys. Rev. D, 66 (2002) · doi:10.1103/PhysRevD.66.123507
[110] Tsamis, N. C.; Woodard, R. P., The Physical basis for infrared divergences in inflationary quantum gravity, Class. Quant. Grav., 11, 2969-2990 (1994) · doi:10.1088/0264-9381/11/12/012
[111] Tsamis, N. C.; Woodard, R. P., The Quantum gravitational back reaction on inflation, Annals Phys., 253, 1-54 (1997) · Zbl 0910.53071 · doi:10.1006/aphy.1997.5613
[112] Sloth, Martin S., On the one loop corrections to inflation and the CMB anisotropies, Nucl. Phys. B, 748, 149-169 (2006) · Zbl 1186.83171 · doi:10.1016/j.nuclphysb.2006.04.029
[113] Sloth, Martin S., On the one loop corrections to inflation. II. The Consistency relation, Nucl. Phys. B, 775, 78-94 (2007) · Zbl 1186.83172 · doi:10.1016/j.nuclphysb.2007.04.012
[114] Seery, David, One-loop corrections to a scalar field during inflation, JCAP, 11 (2007) · doi:10.1088/1475-7516/2007/11/025
[115] Seery, David, One-loop corrections to the curvature perturbation from inflation, JCAP, 02 (2008) · doi:10.1088/1475-7516/2008/02/006
[116] Urakawa, Yuko; Maeda, Kei-ichi, One-loop Corrections to Scalar and Tensor Perturbations during Inflation in Stochastic Gravity, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.064004
[117] Kitamoto, Hiroyuki; Kitazawa, Yoshihisa, Soft Graviton effects on Gauge theories in de Sitter Space, Phys. Rev. D, 87 (2013) · Zbl 1282.83022 · doi:10.1103/PhysRevD.87.124004
[118] Kitamoto, Hiroyuki; Kitazawa, Yoshihisa, Soft gravitational effects in Kadanoff-Baym approach, JHEP, 10, 145 (2013) · doi:10.1007/JHEP10(2013)145
[119] Byrnes, Chris T.; Gerstenlauer, Mischa; Hebecker, Arthur; Nurmi, Sami; Tasinato, Gianmassimo, Inflationary Infrared Divergences: Geometry of the Reheating Surface versus δ N Formalism, JCAP, 08 (2010) · doi:10.1088/1475-7516/2010/08/006
[120] Gerstenlauer, Mischa; Hebecker, Arthur; Tasinato, Gianmassimo, Inflationary Correlation Functions without Infrared Divergences, JCAP, 06 (2011) · doi:10.1088/1475-7516/2011/06/021
[121] Giddings, Steven B.; Sloth, Martin S., Semiclassical relations and IR effects in de Sitter and slow-roll space-times, JCAP, 01 (2011) · doi:10.1088/1475-7516/2011/01/023
[122] Giddings, Steven B.; Sloth, Martin S., Cosmological observables, IR growth of fluctuations, and scale-dependent anisotropies, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.063528
[123] Senatore, Leonardo; Zaldarriaga, Matias, On Loops in Inflation II: IR Effects in Single Clock Inflation, JHEP, 01, 109 (2013) · doi:10.1007/JHEP01(2013)109
[124] Tanaka, Takahiro; Urakawa, Yuko, Strong restriction on inflationary vacua from the local gauge invariance I: Local gauge invariance and infrared regularity, PTEP, 2013 (2013) · Zbl 1331.83135 · doi:10.1093/ptep/ptt057
[125] Geshnizjani, Ghazal; Brandenberger, Robert, Back reaction of perturbations in two scalar field inflationary models, JCAP, 04 (2005) · doi:10.1088/1475-7516/2005/04/006
[126] Urakawa, Yuko, Influence of gauge artifact on adiabatic and entropy perturbations during inflation, Prog. Theor. Phys., 126, 961-982 (2011) · Zbl 1242.83145 · doi:10.1143/PTP.126.961
[127] Tokuda, Junsei; Tanaka, Takahiro, Can all the infrared secular growth really be understood as increase of classical statistical variance?, JCAP, 11 (2018) · Zbl 1527.83173 · doi:10.1088/1475-7516/2018/11/022
[128] Pajer, Enrico; Schmidt, Fabian; Zaldarriaga, Matias, The Observed Squeezed Limit of Cosmological Three-Point Functions, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.083502
[129] Tanaka, Takahiro; Urakawa, Yuko, Loops in inflationary correlation functions, Class. Quant. Grav., 30 (2013) · Zbl 1284.83013 · doi:10.1088/0264-9381/30/23/233001
[130] Tanaka, Takahiro; Urakawa, Yuko, Strong restriction on inflationary vacua from the local gauge invariance III: Infrared regularity of graviton loops, PTEP, 2014 (2014) · Zbl 1331.83135 · doi:10.1093/ptep/ptu071
[131] Senatore, Leonardo; Zaldarriaga, Matias, The constancy of ζ in single-clock Inflation at all loops, JHEP, 09, 148 (2013) · doi:10.1007/JHEP09(2013)148
[132] Assassi, Valentin; Baumann, Daniel; Green, Daniel, Symmetries and Loops in Inflation, JHEP, 02, 151 (2013) · Zbl 1342.83224 · doi:10.1007/JHEP02(2013)151
[133] Seery, David, Infrared effects in inflationary correlation functions, Class. Quant. Grav., 27 (2010) · Zbl 1190.83128 · doi:10.1088/0264-9381/27/12/124005
[134] Tanaka, Takahiro; Urakawa, Yuko, Strong restriction on inflationary vacua from the local gauge invariance II: Infrared regularity and absence of secular growth in the Euclidean vacuum, PTEP, 2013 (2013) · Zbl 1284.83013 · doi:10.1093/ptep/ptt037
[135] Hu, Bei-Lok, Infrared Behavior of Quantum Fields in Inflationary Cosmology - Issues and Approaches: an overview (2018)
[136] Goldberger, Walter D.; Hui, Lam; Nicolis, Alberto, One-particle-irreducible consistency relations for cosmological perturbations, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.103520
[137] Berezhiani, Lasha; Khoury, Justin, Slavnov-Taylor Identities for Primordial Perturbations, JCAP, 02 (2014) · doi:10.1088/1475-7516/2014/02/003
[138] Tanaka, Takahiro; Urakawa, Yuko, Conservation of ζ with radiative corrections from heavy field, JCAP, 06 (2016) · doi:10.1088/1475-7516/2016/06/020
[139] Cohen, Timothy; Green, Daniel, Soft de Sitter Effective Theory, JHEP, 12, 041 (2020) · Zbl 1457.81069 · doi:10.1007/JHEP12(2020)041
[140] Arkani-Hamed, Nima; Baumann, Daniel; Lee, Hayden; Pimentel, Guilherme L., The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, JHEP, 04, 105 (2020) · Zbl 1436.85001 · doi:10.1007/JHEP04(2020)105
[141] Baumann, Daniel; Duaso Pueyo, Carlos; Joyce, Austin; Lee, Hayden; Pimentel, Guilherme L., The cosmological bootstrap: weight-shifting operators and scalar seeds, JHEP, 12, 204 (2020) · doi:10.1007/JHEP12(2020)204
[142] Baumann, Daniel; Duaso Pueyo, Carlos; Joyce, Austin; Lee, Hayden; Pimentel, Guilherme L., The Cosmological Bootstrap: Spinning Correlators from Symmetries and Factorization (2020)
[143] Sleight, Charlotte, A Mellin Space Approach to Cosmological Correlators, JHEP, 01, 090 (2020) · Zbl 1434.81117 · doi:10.1007/JHEP01(2020)090
[144] Sleight, Charlotte; Taronna, Massimo, Bootstrapping Inflationary Correlators in Mellin Space, JHEP, 02, 098 (2020) · Zbl 1435.81174 · doi:10.1007/JHEP02(2020)098
[145] Sleight, Charlotte; Taronna, Massimo, From AdS to dS Exchanges: Spectral Representation, Mellin Amplitudes and Crossing (2020) · Zbl 1435.81174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.