×

Solid consistency. (English) Zbl 1515.83309

Summary: We argue that isotropic scalar fluctuations in solid inflation are adiabatic in the super-horizon limit. During the solid phase this adiabatic mode has peculiar features: constant energy-density slices and comoving slices do not coincide, and their curvatures, parameterized respectively by \(\zeta\) and \(\mathcal{R}\), both evolve in time. The existence of this adiabatic mode implies that Maldacena’s squeezed limit consistency relation holds after angular average over the long mode. The correlation functions of a long-wavelength spherical scalar mode with several short scalar or tensor modes is fixed by the scaling behavior of the correlators of short modes, independently of the solid inflation action or dynamics of reheating.

MSC:

83F05 Relativistic cosmology

References:

[1] J.M. Maldacena, 2003 Non-Gaussian features of primordial fluctuations in single field inflationary models J. High Energy Phys. JHEP05(2003)013 [astro-ph/0210603]
[2] P. Creminelli and M. Zaldarriaga, 2004 Single field consistency relation for the 3-point function J. Cosmol. Astropart. Phys.2004 10 006 [astro-ph/0407059]
[3] C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, 2008 The effective field theory of inflation J. High Energy Phys. JHEP03(2008)014 [0709.0293]
[4] A. Gruzinov, 2004 Elastic inflation, Phys. Rev. D 70 063518 [astro-ph/0404548] · doi:10.1103/PhysRevD.70.063518
[5] S. Endlich, A. Nicolis and J. Wang, 2013 Solid inflation J. Cosmol. Astropart. Phys.2013 10 011 [1210.0569]
[6] L. Senatore and M. Zaldarriaga, 2012 A note on the consistency condition of primordial fluctuations J. Cosmol. Astropart. Phys.2012 08 001 [1203.6884]
[7] M. Akhshik, 2015 Clustering fossils in solid inflation J. Cosmol. Astropart. Phys.2015 05 043 [1409.3004]
[8] S. Endlich, B. Horn, A. Nicolis and J. Wang, 2014 Squeezed limit of the solid inflation three-point function, Phys. Rev. D 90 063506 [1307.8114] · doi:10.1103/PhysRevD.90.063506
[9] M. Akhshik, H. Firouzjahi and S. Jazayeri, 2015 Cosmological perturbations and the Weinberg theorem J. Cosmol. Astropart. Phys.2015 12 027 [1508.03293]
[10] S. Weinberg, 2003 Adiabatic modes in cosmology, Phys. Rev. D 67 123504 [astro-ph/0302326] · doi:10.1103/PhysRevD.67.123504
[11] S. Weinberg, 2008 Cosmology, Oxford University Press, Oxford, U.K. · Zbl 1147.83002
[12] C. Lin and L.Z. Labun, 2016 Effective field theory of broken spatial diffeomorphisms J. High Energy Phys. JHEP03(2016)128 [1501.07160] · Zbl 1388.83024 · doi:10.1007/JHEP03(2016)128
[13] E. Pajer, F. Schmidt and M. Zaldarriaga, 2013 The observed squeezed limit of cosmological three-point functions, Phys. Rev. D 88 083502 [1305.0824] · doi:10.1103/PhysRevD.88.083502
[14] P. Creminelli, J. Noreña and M. Simonović, 2012 Conformal consistency relations for single-field inflation J. Cosmol. Astropart. Phys.2012 07 052 [1203.4595]
[15] K. Hinterbichler, L. Hui and J. Khoury, 2014 An infinite set of Ward identities for adiabatic modes in cosmology J. Cosmol. Astropart. Phys.2014 01 039 [1304.5527]
[16] A. Maleknejad and M.M. Sheikh-Jabbari, 2013 Gauge-flation: inflation from non-Abelian gauge fields, Phys. Lett. B 723 224 [1102.1513] · Zbl 1311.70035 · doi:10.1016/j.physletb.2013.05.001
[17] N. Bartolo, D. Cannone, A. Ricciardone and G. Tasinato, 2016 Distinctive signatures of space-time diffeomorphism breaking in EFT of inflation J. Cosmol. Astropart. Phys.2016 03 044 [1511.07414]
[18] A. Ricciardone and G. Tasinato, Primordial gravitational waves in supersolid inflation, [1611.04516]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.