×

Galaxy imaging surveys as spin-sensitive detector for cosmological colliders. (English) Zbl 1484.85015

Summary: Galaxy imaging surveys provide us with information on both the galaxy distribution and their shapes. In this paper, we systematically investigate the sensitivity of galaxy shapes to new physics in the initial conditions. For this purpose, we decompose the galaxy shape function into spin components, and compute the contributions to each spin component from both intrinsic alignment and weak lensing. We then consider the angular-dependent primordial non-Gaussianity, which is generated by a non-zero integer spin particle when active during inflation, and show that a galaxy imaging survey essentially functions as a spin-sensitive detector of such particles in the early universe. We also perform a forecast of the PNG generated from a higher spin particle, considering a Rubin Observatory LSST-like galaxy survey.

MSC:

85A15 Galactic and stellar structure
83F05 Relativistic cosmology
35B20 Perturbations in context of PDEs
83E50 Supergravity
78A45 Diffraction, scattering
58J47 Propagation of singularities; initial value problems on manifolds
81T11 Higher spin theories

Software:

CAMB

References:

[1] LSST Science, LSST Project Collaboration; Abell, Paul A., LSST Science Book, Version 2.0 (2009)
[2] EUCLID Collaboration; Laureijs, R., Euclid Definition Study Report (2011)
[3] Spergel, D., Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report (2015)
[4] Doré, Olivier, Cosmology with the SPHEREX All-Sky Spectral Survey (2014)
[5] SPTpol Collaboration; Hanson, D., Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.141301
[6] POLARBEAR Collaboration; Ade, P. A. R., A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR, Astrophys. J., 794, 171 (2014) · doi:10.1088/0004-637X/794/2/171
[7] BICEP2, Planck Collaboration; Ade, P. A. R., Joint Analysis of BICEP2/Keck Array and Planck Data, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.101301
[8] Planck Collaboration; Adam, R., Planck intermediate results. XLVII. Planck constraints on reionization history, Astron. Astrophys., 596, A108 (2016) · doi:10.1051/0004-6361/201628897
[9] Bartelmann, Matthias; Schneider, Peter, Weak gravitational lensing, Phys. Rept., 340, 291-472 (2001) · Zbl 0971.83518 · doi:10.1016/S0370-1573(00)00082-X
[10] DES Collaboration; Troxel, M. A., Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.043528
[11] KiDS Collaboration; Asgari, Marika, KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics, Astron. Astrophys., 645, A104 (2021) · doi:10.1051/0004-6361/202039070
[12] HSC Collaboration; Hikage, Chiaki, Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data, Publ. Astron. Soc. Jap., 71, 43 (2019) · doi:10.1093/pasj/psz010
[13] A. Coutts, The scale and dispersion of galactic alignments, Mon. Not. Roy. Astron. Soc.278 (1996) 87. · doi:10.1093/mnras/278.1.87
[14] Lee, Jounghun; Pen, Ue-Li, Cosmic shear from galaxy spins, Astrophys. J. Lett., 532, L5 (2000) · doi:10.1086/312556
[15] Catelan, Paolo; Kamionkowski, Marc; Blandford, Roger D., Intrinsic and extrinsic galaxy alignment, Mon. Not. Roy. Astron. Soc., 320, L7-L13 (2001) · doi:10.1046/j.1365-8711.2001.04105.x
[16] Pen, Ue-Li; Sheth, Ravi; Harnois-Deraps, J.; Chen, Xuelei; Li, Zhigang, Cosmic Tides (2012)
[17] Troxel, M. A.; Ishak, Mustapha, The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology, Phys. Rept., 558, 1-59 (2014) · Zbl 1357.85002 · doi:10.1016/j.physrep.2014.11.001
[18] Joachimi, Benjamin, Galaxy alignments: An overview, Space Sci. Rev., 193, 1-65 (2015) · doi:10.1007/s11214-015-0177-4
[19] Kiessling, Alina, Galaxy Alignments: Theory, Modelling & Simulations, Space Sci. Rev., 193, 67-136 (2015) · doi:10.1007/s11214-015-0203-6
[20] Kirk, Donnacha, Galaxy alignments: Observations and impact on cosmology, Space Sci. Rev., 193, 139-211 (2015) · doi:10.1007/s11214-015-0213-4
[21] Bridle, Sarah; King, Lindsay, Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements, New J. Phys., 9, 444 (2007) · doi:10.1088/1367-2630/9/12/444
[22] Kirk, Donnacha; Rassat, Anais; Host, Ole; Bridle, Sarah, The Cosmological Impact of Intrinsic Alignment Model Choice for Cosmic Shear, Mon. Not. Roy. Astron. Soc., 424, 1647 (2012) · doi:10.1111/j.1365-2966.2012.21099.x
[23] Joachimi, B.; Bridle, S. L., Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations, Astron. Astrophys., 523, A1 (2010) · doi:10.1051/0004-6361/200913657
[24] Johnston, Harry, KiDS+GAMA: Intrinsic alignment model constraints for current and future weak lensing cosmology, Astron. Astrophys., 624, A30 (2019) · doi:10.1051/0004-6361/201834714
[25] Mandelbaum, Rachel, The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts, Mon. Not. Roy. Astron. Soc., 410, 844 (2011) · doi:10.1111/j.1365-2966.2010.17485.x
[26] Hirata, Christopher M.; Mandelbaum, Rachel; Ishak, Mustapha; Seljak, Uros; Nichol, Robert; Pimbblet, Kevin A., Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: Luminosity and redshift scalings and implications for weak lensing surveys, Mon. Not. Roy. Astron. Soc., 381, 1197-1218 (2007) · doi:10.1111/j.1365-2966.2007.12312.x
[27] Kirk, Donnacha; Bridle, Sarah; Schneider, Michael, The Impact of Intrinsic Alignments: Cosmological Constraints from a Joint Analysis of Cosmic Shear and Galaxy Survey Data, Mon. Not. Roy. Astron. Soc., 408, 1502-1515 (2010) · doi:10.1111/j.1365-2966.2010.17213.x
[28] DES Collaboration; Samuroff, S., Dark Energy Survey Year 1 Results: Constraints on Intrinsic Alignments and their Colour Dependence from Galaxy Clustering and Weak Lensing, Mon. Not. Roy. Astron. Soc., 489, 5453-5482 (2019) · doi:10.1093/mnras/stz2197
[29] Dossett, Jason N.; Ishak, Mustapha; Parkinson, David; Davis, Tamara, Constraints and tensions in testing general relativity from Planck and CFHTLenS data including intrinsic alignment systematics, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.023003
[30] Chisari, Nora Elisa; Dvorkin, Cora, Cosmological Information in the Intrinsic Alignments of Luminous Red Galaxies, JCAP, 12 (2013) · doi:10.1088/1475-7516/2013/12/029
[31] Matsumura, T., Mission design of LiteBIRD, J. Low Temp. Phys., 176, 733 (2014) · doi:10.1007/s10909-013-0996-1
[32] Dodelson, Scott, Cross-Correlating Probes of Primordial Gravitational Waves, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.023522
[33] Schmidt, Fabian; Jeong, Donghui, Large-Scale Structure with Gravitational Waves II: Shear, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.083513
[34] Schmidt, Fabian; Pajer, Enrico; Zaldarriaga, Matias, Large-Scale Structure and Gravitational Waves III: Tidal Effects, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.083507
[35] Chisari, Nora Elisa; Dvorkin, Cora; Schmidt, Fabian, Can weak lensing surveys confirm BICEP2?, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.043527
[36] Planck Collaboration; Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10 (2020) · doi:10.1051/0004-6361/201833887
[37] Chen, Xingang; Wang, Yi, Quasi-Single Field Inflation and Non-Gaussianities, JCAP, 04 (2010) · doi:10.1088/1475-7516/2010/04/027
[38] Noumi, Toshifumi; Yamaguchi, Masahide; Yokoyama, Daisuke, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP, 06, 051 (2013) · Zbl 1342.83110 · doi:10.1007/JHEP06(2013)051
[39] Arkani-Hamed, Nima; Maldacena, Juan, Cosmological Collider Physics (2015)
[40] Lee, Hayden; Baumann, Daniel; Pimentel, Guilherme L., Non-Gaussianity as a Particle Detector, JHEP, 12, 040 (2016) · Zbl 1390.83465 · doi:10.1007/JHEP12(2016)040
[41] Arkani-Hamed, Nima; Baumann, Daniel; Lee, Hayden; Pimentel, Guilherme L., The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, JHEP, 04, 105 (2020) · Zbl 1436.85001 · doi:10.1007/JHEP04(2020)105
[42] Kim, Suro; Noumi, Toshifumi; Takeuchi, Keito; Zhou, Siyi, Heavy Spinning Particles from Signs of Primordial Non-Gaussianities: Beyond the Positivity Bounds, JHEP, 12, 107 (2019) · doi:10.1007/JHEP12(2019)107
[43] Kumar, Soubhik; Sundrum, Raman, Seeing Higher-Dimensional Grand Unification In Primordial Non-Gaussianities, JHEP, 04, 120 (2019) · doi:10.1007/JHEP04(2019)120
[44] Rahman, Rakibur; Taronna, Massimo, From Higher Spins to Strings: A Primer (2015) · Zbl 1359.81139
[45] Vasiliev, Mikhail A., Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B, 243, 378-382 (1990) · Zbl 1332.81084 · doi:10.1016/0370-2693(90)91400-6
[46] Vasiliev, M. A., Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B, 567, 139-151 (2003) · Zbl 1052.81573 · doi:10.1016/S0370-2693(03)00872-4
[47] Weinberg, Steven, Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev., 135, B1049-B1056 (1964) · Zbl 0144.23702 · doi:10.1103/PhysRev.135.B1049
[48] Weinberg, Steven; Witten, Edward, Limits on Massless Particles, Phys. Lett. B, 96, 59-62 (1980) · doi:10.1016/0370-2693(80)90212-9
[49] Aragone, C.; Deser, Stanley, Consistency Problems of Hypergravity, Phys. Lett. B, 86, 161-163 (1979) · doi:10.1016/0370-2693(79)90808-6
[50] Planck Collaboration; Akrami, Y., Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys., 641, A9 (2020) · doi:10.1051/0004-6361/201935891
[51] Bartolo, Nicola; Kehagias, Alex; Liguori, Michele; Riotto, Antonio; Shiraishi, Maresuke; Tansella, Vittorio, Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.023503
[52] Franciolini, Gabriele; Kehagias, Alex; Riotto, Antonio; Shiraishi, Maresuke, Detecting higher spin fields through statistical anisotropy in the CMB bispectrum, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.043533
[53] Bordin, Lorenzo; Cabass, Giovanni, Probing higher-spin fields from inflation with higher-order statistics of the CMB, JCAP, 06 (2019) · Zbl 1541.83121 · doi:10.1088/1475-7516/2019/06/050
[54] Schmidt, Fabian; Chisari, Nora Elisa; Dvorkin, Cora, Imprint of inflation on galaxy shape correlations, JCAP, 10 (2015) · doi:10.1088/1475-7516/2015/10/032
[55] Chisari, Nora Elisa; Dvorkin, Cora; Schmidt, Fabian; Spergel, David, Multitracing Anisotropic Non-Gaussianity with Galaxy Shapes, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.123507
[56] Kogai, Kazuhiro; Matsubara, Takahiko; Nishizawa, Atsushi J.; Urakawa, Yuko, Intrinsic galaxy alignment from angular dependent primordial non-Gaussianity, JCAP, 08 (2018) · Zbl 1536.83185 · doi:10.1088/1475-7516/2018/08/014
[57] Ballardini, Mario; Matthewson, William Luke; Maartens, Roy, Constraining primordial non-Gaussianity using two galaxy surveys and CMB lensing, Mon. Not. Roy. Astron. Soc., 489, 1950-1956 (2019) · doi:10.1093/mnras/stz2258
[58] Moradinezhad Dizgah, Azadeh; Lee, Hayden; Muñoz, Julian B.; Dvorkin, Cora, Galaxy Bispectrum from Massive Spinning Particles, JCAP, 05 (2018) · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/05/013
[59] Moradinezhad Dizgah, Azadeh; Franciolini, Gabriele; Kehagias, Alex; Riotto, Antonio, Constraints on long-lived, higher-spin particles from galaxy bispectrum, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.063520
[60] Moradinezhad Dizgah, Azadeh; Dvorkin, Cora, Scale-Dependent Galaxy Bias from Massive Particles with Spin during Inflation, JCAP, 01 (2018) · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/01/010
[61] Biagetti, Matteo; Orlando, Giorgio, Primordial Gravitational Waves from Galaxy Intrinsic Alignments, JCAP, 07 (2020) · Zbl 1492.85005 · doi:10.1088/1475-7516/2020/07/005
[62] Tanaka, Takahiro; Urakawa, Yuko, Dominance of gauge artifact in the consistency relation for the primordial bispectrum, JCAP, 05 (2011) · Zbl 1223.83061 · doi:10.1088/1475-7516/2011/05/014
[63] Pajer, Enrico; Schmidt, Fabian; Zaldarriaga, Matias, The Observed Squeezed Limit of Cosmological Three-Point Functions, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.083502
[64] Dalal, Neal; Dore, Olivier; Huterer, Dragan; Shirokov, Alexander, The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.123514
[65] Slosar, Anze; Hirata, Christopher; Seljak, Uros; Ho, Shirley; Padmanabhan, Nikhil, Constraints on local primordial non-Gaussianity from large scale structure, JCAP, 08 (2008) · doi:10.1088/1475-7516/2008/08/031
[66] Jeong, Donghui; Schmidt, Fabian; Hirata, Christopher M., Large-scale clustering of galaxies in general relativity, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.023504
[67] Afshordi, Niayesh; Tolley, Andrew J., Primordial non-gaussianity, statistics of collapsed objects, and the Integrated Sachs-Wolfe effect, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.123507
[68] Baldauf, Tobias; Seljak, Uros; Senatore, Leonardo; Zaldarriaga, Matias, Galaxy Bias and non-Linear Structure Formation in General Relativity, JCAP, 10 (2011) · doi:10.1088/1475-7516/2011/10/031
[69] Cabass, Giovanni; Pajer, Enrico; Schmidt, Fabian, Imprints of Oscillatory Bispectra on Galaxy Clustering, JCAP, 09 (2018) · doi:10.1088/1475-7516/2018/09/003
[70] Akitsu, Kazuyuki; Kurita, Toshiki; Nishimichi, Takahiro; Takada, Masahiro; Tanaka, Satoshi, Imprint of anisotropic primordial non-Gaussianity on halo intrinsic alignments in simulations (2020)
[71] Schmidt, Fabian; Jeong, Donghui, Cosmic Rulers, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.083527
[72] Bernardeau, Francis; Bonvin, Camille; Vernizzi, Filippo, Full-sky lensing shear at second order, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.083002
[73] Andrianomena, Sambatra; Clarkson, Chris; Patel, Prina; Umeh, Obinna; Uzan, Jean-Philippe, Non-linear relativistic contributions to the cosmological weak-lensing convergence, JCAP, 06 (2014) · doi:10.1088/1475-7516/2014/06/023
[74] Clarkson, Chris, Roulettes: A weak lensing formalism for strong lensing — I. Overview, Class. Quant. Grav., 33 (2016) · Zbl 1345.83001 · doi:10.1088/0264-9381/33/16/16LT01
[75] Yoo, Jaiyul; Grimm, Nastassia; Mitsou, Ermis; Amara, Adam; Refregier, Alexandre, Gauge-Invariant Formalism of Cosmological Weak Lensing, JCAP, 04 (2018) · Zbl 1536.83210 · doi:10.1088/1475-7516/2018/04/029
[76] Fleury, Pierre; Larena, Julien; Uzan, Jean-Philippe, Weak lensing distortions beyond shear, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.023526
[77] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[78] Lewis, Antony; Challinor, Anthony; Lasenby, Anthony, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., 538, 473-476 (2000) · doi:10.1086/309179
[79] Fleury, Pierre; Larena, Julien; Uzan, Jean-Philippe, Weak gravitational lensing of finite beams, Phys. Rev. Lett., 119 (2017) · Zbl 1481.83025 · doi:10.1103/PhysRevLett.119.191101
[80] Goldberg, David M.; Bacon, David J., Galaxy-galaxy flexion: Weak lensing to second order, Astrophys. J., 619, 741-748 (2005) · doi:10.1086/426782
[81] Okura, Yuki; Umetsu, Keiichi; Futamase, Toshifumi, A New Measure for Weak Lensing Flexion, Astrophys. J., 660, 995-1002 (2007) · doi:10.1086/513135
[82] Bacon, David J.; Goldberg, D. M.; Rowe, B. T. P.; Taylor, A. N., Weak gravitational flexion, Mon. Not. Roy. Astron. Soc., 365, 414-428 (2006) · doi:10.1111/j.1365-2966.2005.09624.x
[83] Schneider, Peter; Er, Xinzhong, Weak lensing goes bananas: What flexion really measures, Astron. Astrophys., 485, 363-376 (2008) · Zbl 1148.85301 · doi:10.1051/0004-6361:20078631
[84] Clarkson, Chris, Roulettes: A weak lensing formalism for strong lensing — II. Derivation and analysis, Class. Quant. Grav., 33 (2016) · Zbl 1354.83003 · doi:10.1088/0264-9381/33/24/245003
[85] Refregier, Alexandre, Shapelets: I. a method for image analysis, Mon. Not. Roy. Astron. Soc., 338, 35 (2003) · doi:10.1046/j.1365-8711.2003.05901.x
[86] Refregier, Alexandre; Bacon, David, Shapelets. 2. A method for weak lensing measurements, Mon. Not. Roy. Astron. Soc., 338, 48 (2003) · doi:10.1046/j.1365-8711.2003.05902.x
[87] Kelly, Brandon C.; McKay, Timothy A., Morphological classification of galaxies by shapelet decomposition in the Sloan Digital Sky Survey, Astron. J., 127, 625 (2004) · doi:10.1086/380934
[88] S. Weinberg, Cosmology, Oxford University Press (2008) [INSPIRE]. · Zbl 1147.83002
[89] Newman, E. T.; Penrose, R., Note on the Bondi-Metzner-Sachs group, J. Math. Phys., 7, 863-870 (1966) · doi:10.1063/1.1931221
[90] Goldberg, J. N.; MacFarlane, A. J.; Newman, E. T.; Rohrlich, F.; Sudarshan, E. C. G., Spin s spherical harmonics and edth, J. Math. Phys., 8, 2155 (1967) · Zbl 0155.57402 · doi:10.1063/1.1705135
[91] Thorne, K. S., Multipole Expansions of Gravitational Radiation, Rev. Mod. Phys., 52, 299-339 (1980) · doi:10.1103/RevModPhys.52.299
[92] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Large-Scale Galaxy Bias, Phys. Rept., 733, 1-193 (2018) · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[93] Vlah, Zvonimir; Chisari, Nora Elisa; Schmidt, Fabian, An EFT description of galaxy intrinsic alignments, JCAP, 01 (2020) · Zbl 1489.85019 · doi:10.1088/1475-7516/2020/01/025
[94] Mirbabayi, Mehrdad; Schmidt, Fabian; Zaldarriaga, Matias, Biased Tracers and Time Evolution, JCAP, 07 (2015) · doi:10.1088/1475-7516/2015/07/030
[95] Assassi, Valentin; Baumann, Daniel; Pajer, Enrico; Welling, Yvette; van der Woude, Drian, Effective theory of large-scale structure with primordial non-Gaussianity, JCAP, 11 (2015) · doi:10.1088/1475-7516/2015/11/024
[96] Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian, Galaxy Bias and Primordial Non-Gaussianity, JCAP, 12 (2015) · doi:10.1088/1475-7516/2015/12/043
[97] Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; Di Matteo, Tiziana; Feng, Yu; Khandai, Nishikanta, Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics, Mon. Not. Roy. Astron. Soc., 448, 3522-3544 (2015) · doi:10.1093/mnras/stv272
[98] Tenneti, Ananth; Mandelbaum, Rachel; Di Matteo, Tiziana; Kiessling, Alina; Khandai, Nishikanta, Galaxy shapes and alignments in the MassiveBlack-II hydrodynamic and dark matter-only simulations, Mon. Not. Roy. Astron. Soc., 453, 469-482 (2015) · doi:10.1093/mnras/stv1625
[99] Chisari, Nora Elisa; Laigle, Clotilde; Codis, Sandrine; Dubois, Yohan; Devriendt, Julien; Miller, Lance, Redshift and luminosity evolution of the intrinsic alignments of galaxies in Horizon-AGN, Mon. Not. Roy. Astron. Soc., 461, 2702-2721 (2016) · doi:10.1093/mnras/stw1409
[100] Singh, Sukhdeep; Mandelbaum, Rachel; More, Surhud, Intrinsic alignments of SDSS-III BOSS LOWZ sample galaxies, Mon. Not. Roy. Astron. Soc., 450, 2195-2216 (2015) · doi:10.1093/mnras/stv778
[101] Blazek, Jonathan; MacCrann, Niall; Troxel, M. A.; Fang, Xiao, Beyond linear galaxy alignments, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.103506
[102] Angulo, Raul; Fasiello, Matteo; Senatore, Leonardo; Vlah, Zvonimir, On the Statistics of Biased Tracers in the Effective Field Theory of Large Scale Structures, JCAP, 09 (2015) · doi:10.1088/1475-7516/2015/9/029
[103] P.J.E. Peebles, The Large-Scale Structure of the Universe, Princeton University Press (1980). · Zbl 1422.85005
[104] Abolhasani, Ali Akbar; Mirbabayi, Mehrdad; Pajer, Enrico, Systematic Renormalization of the Effective Theory of Large Scale Structure, JCAP, 05 (2016) · doi:10.1088/1475-7516/2016/05/063
[105] Foreman, Simon; Perrier, Hideki; Senatore, Leonardo, Precision Comparison of the Power Spectrum in the EFTofLSS with Simulations, JCAP, 05 (2016) · doi:10.1088/1475-7516/2016/05/027
[106] Pajer, Enrico; Zaldarriaga, Matias, On the Renormalization of the Effective Field Theory of Large Scale Structures, JCAP, 08 (2013) · doi:10.1088/1475-7516/2013/08/037
[107] Foreman, Simon; Senatore, Leonardo, The EFT of Large Scale Structures at All Redshifts: Analytical Predictions for Lensing, JCAP, 04 (2016) · doi:10.1088/1475-7516/2016/04/033
[108] Mellier, Yannick, Probing the universe with weak lensing, Ann. Rev. Astron. Astrophys., 37, 127-189 (1999) · doi:10.1146/annurev.astro.37.1.127
[109] Kumar, Soubhik; Sundrum, Raman, Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP, 05, 011 (2018) · Zbl 1391.85005 · doi:10.1007/JHEP05(2018)011
[110] Ghosh, Archisman; Kundu, Nilay; Raju, Suvrat; Trivedi, Sandip P., Conformal Invariance and the Four Point Scalar Correlator in Slow-Roll Inflation, JHEP, 07, 011 (2014) · doi:10.1007/JHEP07(2014)011
[111] Camanho, Xian O.; Edelstein, Jose D.; Maldacena, Juan; Zhiboedov, Alexander, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP, 02, 020 (2016) · Zbl 1388.83093 · doi:10.1007/JHEP02(2016)020
[112] Kumar, Soubhik; Sundrum, Raman, Cosmological Collider Physics and the Curvaton, JHEP, 04, 077 (2020) · doi:10.1007/JHEP04(2020)077
[113] Wang, Lian-Tao; Xianyu, Zhong-Zhi, In Search of Large Signals at the Cosmological Collider, JHEP, 02, 044 (2020) · doi:10.1007/JHEP02(2020)044
[114] Wang, Lian-Tao; Xianyu, Zhong-Zhi, Gauge Boson Signals at the Cosmological Collider, JHEP, 11, 082 (2020) · doi:10.1007/JHEP11(2020)082
[115] Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi, Neutrino Signatures in Primordial Non-Gaussianities, JHEP, 09, 022 (2018) · doi:10.1007/JHEP09(2018)022
[116] Hook, Anson; Huang, Junwu; Racco, Davide, Searches for other vacua. Part II. A new Higgstory at the cosmological collider, JHEP, 01, 105 (2020) · doi:10.1007/JHEP01(2020)105
[117] Higuchi, Atsushi, Forbidden Mass Range for Spin-2 Field Theory in De Sitter Space-time, Nucl. Phys. B, 282, 397-436 (1987) · doi:10.1016/0550-3213(87)90691-2
[118] Kehagias, Alex; Riotto, Antonio, On the Inflationary Perturbations of Massive Higher-Spin Fields, JCAP, 07 (2017) · Zbl 1371.83209 · doi:10.1088/1475-7516/2017/07/046
[119] Bordin, Lorenzo; Creminelli, Paolo; Khmelnitsky, Andrei; Senatore, Leonardo, Light Particles with Spin in Inflation, JCAP, 10 (2018) · Zbl 1536.83146 · doi:10.1088/1475-7516/2018/10/013
[120] Shiraishi, Maresuke; Komatsu, Eiichiro; Peloso, Marco; Barnaby, Neil, Signatures of anisotropic sources in the squeezed-limit bispectrum of the cosmic microwave background, JCAP, 05 (2013) · doi:10.1088/1475-7516/2013/05/002
[121] Slepian, Zachary; Eisenstein, Daniel J., A practical computational method for the anisotropic redshift-space three-point correlation function, Mon. Not. Roy. Astron. Soc., 478, 1468-1483 (2018) · doi:10.1093/mnras/sty1063
[122] Sugiyama, Naonori S.; Saito, Shun; Beutler, Florian; Seo, Hee-Jong, A complete FFT-based decomposition formalism for the redshift-space bispectrum, Mon. Not. Roy. Astron. Soc., 484, 364-384 (2019) · doi:10.1093/mnras/sty3249
[123] Chang, C.; Jarvis, M.; Jain, B.; Kahn, S. M.; Kirkby, D.; Connolly, A., The Effective Number Density of Galaxies for Weak Lensing Measurements in the LSST Project, Mon. Not. Roy. Astron. Soc., 434, 2121 (2013) · doi:10.1093/mnras/stt1156
[124] Bardeen, James M.; Bond, J. R.; Kaiser, Nick; Szalay, A. S., The Statistics of Peaks of Gaussian Random Fields, Astrophys. J., 304, 15-61 (1986) · doi:10.1086/164143
[125] Krause, Elisabeth; Hirata, Christopher M., Weak lensing power spectra for precision cosmology: Multiple-deflection, reduced shear and lensing bias corrections, Astron. Astrophys., 523, A28 (2010) · doi:10.1051/0004-6361/200913524
[126] Viola, Massimo; Melchior, Peter; Bartelmann, Matthias, Shear-flexion cross-talk in weak-lensing measurements, Mon. Not. Roy. Astron. Soc., 419, 2215 (2012) · doi:10.1111/j.1365-2966.2011.19872.x
[127] H. Ehrentraut and W. Muschik, On symmetric irreducible tensors in d-dimensions, ARI51 (1998) 149. · doi:10.1007/s007770050048
[128] Schmidt, Fabian; Jeong, Donghui; Desjacques, Vincent, Peak-Background Split, Renormalization, and Galaxy Clustering, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.023515
[129] Schmidt, Andreas S.; White, Simon D. M.; Schmidt, Fabian; Stücker, Jens, Cosmological N-Body Simulations with a Large-Scale Tidal Field, Mon. Not. Roy. Astron. Soc., 479, 162-170 (2018) · doi:10.1093/mnras/sty1430
[130] Masaki, Shogo; Nishimichi, Takahiro; Takada, Masahiro, Anisotropic separate universe simulations, Mon. Not. Roy. Astron. Soc., 496, 483-496 (2020) · doi:10.1093/mnras/staa1579
[131] Akitsu, Kazuyuki; Li, Yin; Okumura, Teppei, Cosmological simulation in tides: power spectrum and halo shape responses, and shape assembly bias (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.