×

Bifurcation analysis of a special delayed predator-prey model with herd behavior and prey harvesting. (English) Zbl 1484.92078

Summary: In this paper, we propose a predator-prey system with square root functional response, two delays and prey harvesting, in which an algebraic equation stands for the economic interest of the yield of the harvest effort. Firstly, the existence of the positive equilibrium is discussed. Then, by taking two delays as bifurcation parameters, the local stability of the positive equilibrium and the existence of Hopf bifurcation are obtained. Next, some explicit formulas determining the properties of Hopf bifurcation are analyzed based on the normal form method and center manifold theory. Furthermore, the control of Hopf bifurcation is discussed in theory. What’s more, the optimal tax policy of system is given. Finally, simulations are given to check the theoretical results.

MSC:

92D25 Population dynamics (general)
34H20 Bifurcation control of ordinary differential equations
34K18 Bifurcation theory of functional-differential equations
49K15 Optimality conditions for problems involving ordinary differential equations
49N90 Applications of optimal control and differential games

References:

[1] C, The functional response of invertebrate predators to prey density, Mem. Entomol. Soc. Can., 98, 5-86 (1966)
[2] R. M. May, <i>Stability and Complexity in Model Ecosystemsm</i>, New Jersey: Princeton University Press, 1973.
[3] H. I. Freedman, <i>Deterministic Mathematical Models in Population Ecology</i>, New York: Dekker, 1980. · Zbl 0448.92023
[4] P, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47, 219-234 (1960) · Zbl 0103.12502 · doi:10.1093/biomet/47.3-4.219
[5] P, Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthol. Soc., 8, 211-221 (1989) · doi:10.2307/1467324
[6] J, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44, 331-340 (1975) · doi:10.2307/3866
[7] D, A model for tropic interaction, Ecology, 56, 881-892 (1975) · doi:10.2307/1936298
[8] V, Modeling herd behavior in population systems, Nonlinear Anal.: Real World Appl., 12, 2319-2338 (2011) · Zbl 1225.49037 · doi:10.1016/j.nonrwa.2011.02.002
[9] P, Predator-prey dynamics with square root functional responses, Nonlinear Anal.: Real World Appl., 13, 1837-1843 (2012) · Zbl 1254.92072 · doi:10.1016/j.nonrwa.2011.12.014
[10] S, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23, 033102 (2013) · Zbl 1323.92197 · doi:10.1063/1.4812724
[11] C, Stability and Hopf bifurcation in a delayed predator-prey system with herd behavior, Abstr. Appl. Anal., 2014, 568943 (2014) · Zbl 1449.92041
[12] E, Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecol. Complexity, 14, 37-47 (2013) · doi:10.1016/j.ecocom.2013.01.004
[13] C, Global dynamics of a predator-prey model with defense mechanism for prey, Appl. Math. Lett., 62, 42-48 (2016) · Zbl 1351.34052 · doi:10.1016/j.aml.2016.06.013
[14] B, Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey, Math. Biosci., 274, 58-72 (2016) · Zbl 1336.37029 · doi:10.1016/j.mbs.2016.02.003
[15] M, An ecoepidemic model with prey herd behavior and predator feeding saturation response on both healthy and diseased prey, Math. Model. Nat. Phenom., 12, 133-161 (2017) · Zbl 1384.37112 · doi:10.1051/mmnp/201712208
[16] X, Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality, Chaos Solitons Fractals, 81, 303-314 (2015) · Zbl 1355.92098 · doi:10.1016/j.chaos.2015.10.001
[17] X, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonlinear Dyn., 86, 73-89 (2016) · Zbl 1349.37091 · doi:10.1007/s11071-016-2873-3
[18] Q, Stationary distribution and extinction of a stochastic predator-prey model with herd behavior, J. Franklin Inst., 355, 8177-8193 (2018) · Zbl 1398.92209 · doi:10.1016/j.jfranklin.2018.09.013
[19] X, Dynamical analysis of a delayed diffusive predator-prey model with schooling behavior and Allee effect, J. Biol. Dyn., 14, 826-848 (2020) · doi:10.1080/17513758.2020.1850892
[20] W, Analysis on existence of bifurcation solutions for a predator-prey model with herd behavior, Appl. Math. Model., 53, 433-446 (2018) · Zbl 1480.92183 · doi:10.1016/j.apm.2017.09.020
[21] W, Effect of cross-diffusion on the stationary problem of a predator-prey system with a protection zone, Comput. Math. Appl., 76, 2262-2271 (2018) · Zbl 1442.92144 · doi:10.1016/j.camwa.2018.08.025
[22] F, Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting, Chaos Solitons Fractals, 140, 110180 (2020) · Zbl 1495.92061 · doi:10.1016/j.chaos.2020.110180
[23] S, Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model, Phys. A, 572, 125840 (2021) · Zbl 07458728 · doi:10.1016/j.physa.2021.125840
[24] S, On the zeros of transcendental functionas with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impulsive Sys., 10, 863-874 (2003) · Zbl 1068.34072
[25] J. K. Hale, <i>Theory of Functional Differential Equations</i>, New York: Springer-Verlag, 1977. · Zbl 0352.34001
[26] Y. Kuang, <i>Delay Differerntial Equations with Application in Population Dynamics</i>, New York: Academic Press, 1993. · Zbl 0777.34002
[27] E, Global analyses in some delayed ratio-dependent predator-prey systems, Nonlinear Anal.: Theory Methods Appl., 32, 381-408 (1998) · Zbl 0946.34061 · doi:10.1016/S0362-546X(97)00491-4
[28] X. Y. Meng, J. Li, Dynamical behavior of a delayed prey-predator-scavenger system with fear effect and linear harvesting, <i>Int. J. Biomath.</i>, 2021. Available from: <a href=“https://doi.org/10.1142/S1793524521500248” target=“_blank”>https://doi.org/10.1142/S1793524521500248</a>. · Zbl 1476.92038
[29] X, Dynamics of a food chain model with two infected predators, Int. J. Bifurcation Chaos, 31, 2150019 (2021) · Zbl 1459.92160 · doi:10.1142/S021812742150019X
[30] S. Djilali, B. Ghanbari, The influence of an infectious disease on a prey-predator model equipped with a fractional-order derivative, <i>Adv. Differ. Equations</i>, <b>2021</b> (2021), 20. Available from: <a href=“https://doi.org/10.1186/s13662-020-03177-9” target=“_blank”>https://doi.org/10.1186/s13662-020-03177-9</a>. · Zbl 1485.92085
[31] H, The economic theory of a common property resource: The fishery, J. Political Econ., 62, 124-142 (1954) · doi:10.1086/257497
[32] D, Singular dynamic Leontief systems, Econometrics, 45, 991-995 (1997) · Zbl 0368.90029
[33] Y, Chaotic control based on descriptor bioeconomic systems, Control Decis., 22, 445-447 (2007)
[34] X, Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Int. J. Bifurcation Chaos, 28, 1850042 (2018) · Zbl 1388.34075 · doi:10.1142/S0218127418500426
[35] K, Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay, Nonlinear Anal.: Hybrid Syst., 5, 613-625 (2011) · Zbl 1245.92060 · doi:10.1016/j.nahs.2011.05.004
[36] Q. L. Zhang, C. Liu, X. Zhang, <i>Complexity, Analysis and Control of Singular Biological Systems</i>, London: Springer Press, 2012. · Zbl 1402.92009
[37] G, Hopf bifurcation of a predator-prey system with predator harvesting and two delays, Nonlinear Dyn., 73, 2119-2131 (2013) · Zbl 1281.92076 · doi:10.1007/s11071-013-0928-2
[38] C, Dynamical analysis in a bioeconomic phytoplankton zooplankton system with double time delays and environmental stochasticity, Phys. A, 482, 682-698 (2017) · Zbl 1495.92115 · doi:10.1016/j.physa.2017.04.104
[39] B, Analysis and behavior control of a modified singular prey-predator model, Eur. J. Control, 49, 107-115 (2019) · Zbl 1418.92085 · doi:10.1016/j.ejcon.2019.01.001
[40] W. M. Boothby, <i>An Introduction to Differential Manifolds and Riemannian Geometry</i>, New York: Academic Press, 1986. · Zbl 0596.53001
[41] B, Normal forms and bifurcations for the differential-algebraic systems, Acta Math. Appl. Sin., 23, 429-433 (2000) · Zbl 0960.34004
[42] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, <i>Theory and Applications of Hopf Bifurcation</i>, London: Cambridge University Press, 1981. · Zbl 0474.34002
[43] R, Period doubling cascades of prey-predator model with nonlinear harvesting and control of over exploitation through taxation, Commu. Nonlinear Sci. Numer. Simul., 19, 2382-2405 (2014) · Zbl 1457.92138 · doi:10.1016/j.cnsns.2013.10.033
[44] M, A bioeconomic differential algebraic predator-prey model with nonlinear prey harvesting, Appl. Math. Model., 42, 17-28 (2017) · Zbl 1443.92015 · doi:10.1016/j.apm.2016.09.029
[45] P, Bioeconomics of a renewable resource in presence of a predator, Nonlinear Anal.: Real. World Appl., 2, 497-506 (2001) · Zbl 1011.92050 · doi:10.1016/S1468-1218(01)00006-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.