×

Stability and Hopf bifurcation in a delayed predator-prey system with herd behavior. (English) Zbl 1449.92041

Summary: A special predator-prey system is investigated in which the prey population exhibits herd behavior in order to provide a self-defense against predators, while the predator is intermediate and its population shows individualistic behavior. Considering the fact that there always exists a time delay in the conversion of the biomass of prey to that of predator in this system, we obtain a delayed predator-prey model with square root functional response and quadratic mortality. For this model, we mainly investigate the stability of positive equilibrium and the existence of Hopf bifurcation by choosing the time delay as a bifurcation parameter.

MSC:

92D25 Population dynamics (general)
34C23 Bifurcation theory for ordinary differential equations
34D20 Stability of solutions to ordinary differential equations

References:

[1] Chen, L.; Song, X.; Lu, Z., Mathematical Ecological Models and Research Methods (2003), Chengdu, China: Sichuan Science and Technology Press, Chengdu, China
[2] Holling, C. S., The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada, 45, 5-60 (1965) · doi:10.4039/entm9745fv
[3] Andrews, J. F., A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnology and Bioengineering, 10, 6, 707-723 (1968) · doi:10.1002/bit.260100602
[4] Beddington, J., Mutual interference between parasites or predators and its effect on searching effciency, Journal of Animal Ecology, 44, 1, 331-340 (1975) · doi:10.2307/3866
[5] DeAngelis, D. L.; Goldsten, R. A.; O’Neill, R. V., A model for trophic interaction, Ecology, 56, 4, 881-892 (1975) · doi:10.2307/1936298
[6] Kooij, R. E.; Zegeling, A., A predator-prey model with Ivlev’s functional response, Journal of Mathematical Analysis and Applications, 198, 2, 473-489 (1996) · Zbl 0851.34030 · doi:10.1006/jmaa.1996.0093
[7] Arditi, R.; Ginzburg, L. R., Coupling in predator-prey dynamics: ratio-dependence, Journal of Theoretical Biology, 139, 3, 311-326 (1989)
[8] Kuang, Y.; Beretta, E., Global qualitative analysis of a ratio-dependent predator-prey system, Journal of Mathematical Biology, 36, 4, 389-406 (1998) · Zbl 0895.92032 · doi:10.1007/s002850050105
[9] Ruan, S.; Xiao, D., Global analysis in a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics, 61, 4, 1445-1472 (2000) · Zbl 0986.34045 · doi:10.1137/S0036139999361896
[10] Xiao, D.; Zhu, H., Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics, 66, 3, 802-819 (2006) · Zbl 1109.34034 · doi:10.1137/050623449
[11] Zhu, H.; Campbell, S. A.; Wolkowicz, G. S. K., Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics, 63, 2, 636-682 (2002) · Zbl 1036.34049 · doi:10.1137/S0036139901397285
[12] Zhang, X.-A.; Chen, L.; Neumann, A. U., The stage-structured predator-prey model and optimal harvesting policy, Mathematical Biosciences, 168, 2, 201-210 (2000) · Zbl 0961.92037 · doi:10.1016/S0025-5564(00)00033-X
[13] Aziz-Alaoui, M. A.; Okiye, M. D., Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Applied Mathematics Letters, 16, 7, 1069-1075 (2003) · Zbl 1063.34044 · doi:10.1016/S0893-9659(03)90096-6
[14] Nindjin, A. F.; Aziz-Alaoui, M. A.; Cadivel, M., Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Analysis: Real World Applications, 7, 5, 1104-1118 (2006) · Zbl 1104.92065 · doi:10.1016/j.nonrwa.2005.10.003
[15] Han, L.; Ma, Z.; Hethcote, H. W., Four predator prey models with infectious diseases, Mathematical and Computer Modelling, 34, 7-8, 849-858 (2001) · Zbl 0999.92032 · doi:10.1016/S0895-7177(01)00104-2
[16] Xu, R.; Ma, Z., Stability and Hopf bifurcation in a predator-prey model with stage structure for the predator, Nonlinear Analysis: Real World Applications, 9, 4, 1444-1460 (2008) · Zbl 1154.92327 · doi:10.1016/j.nonrwa.2007.03.015
[17] Liu, M.; Wang, K., Global stability of stage-structured predator-prey models with Beddington-DeAngelis functional response, Communications in Nonlinear Science and Numerical Simulation, 16, 9, 3792-3797 (2011) · Zbl 1219.92064 · doi:10.1016/j.cnsns.2010.12.026
[18] Ji, C.; Jiang, D.; Li, X., Qualitative analysis of a stochastic ratio-dependent predatorprey system, Journal of Computational and Applied Mathematics, 235, 5, 1326-1341 (2011) · Zbl 1229.92076 · doi:10.1016/j.cam.2010.08.021
[19] Ajraldi, V.; Pittavino, M.; Venturino, E., Modeling herd behavior in population systems, Nonlinear Analysis: Real World Applications, 12, 4, 2319-2338 (2011) · Zbl 1225.49037 · doi:10.1016/j.nonrwa.2011.02.002
[20] Braza, P. A., Predator-prey dynamics with square root functional responses, Nonlinear Analysis: Real World Applications, 13, 4, 1837-1843 (2012) · Zbl 1254.92072 · doi:10.1016/j.nonrwa.2011.12.014
[21] Venturino, E.; Petrovskii, S., Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecological Complexity, 14, 37-47 (2013) · doi:10.1016/j.ecocom.2013.01.004
[22] Belvisi, S.; Venturino, E., An ecoepidemic model with diseased predators and prey group defense, Simulation Modelling Practice and Theory, 34, 144-155 (2013) · doi:10.1016/j.simpat.2013.02.004
[23] Yuan, S.; Xu, C.; Zhang, T., Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23, 3 (2013) · Zbl 1323.92197 · doi:10.1063/1.4812724
[24] Brentnall, S. J.; Richards, K. J.; Brindley, J.; Murphy, E., Plankton patchiness and its effect on larger-scale productivity, Journal of Plankton Research, 25, 2, 121-140 (2003) · doi:10.1093/plankt/25.2.121
[25] Fulton, E. A.; Smith, A. D. M.; Johnson, C. R., Mortality and predation in ecosystem models: is it important how these are expressed?, Ecological Modelling, 169, 1, 157-178 (2003) · doi:10.1016/S0304-3800(03)00268-0
[26] Baurmann, M.; Gross, T.; Feudel, U., Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, Journal of Theoretical Biology, 245, 2, 220-229 (2007) · Zbl 1451.92248 · doi:10.1016/j.jtbi.2006.09.036
[27] MacDonald, N., Biological Delay Systems: Linear Stability Theory (1989), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0669.92001
[28] Hale, J. K.; Lunel, S. M. V., Introduction to Functional-Differential Equations (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0787.34002
[29] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Boston, Mass, USA: Academic Press, Boston, Mass, USA · Zbl 0777.34002
[30] Wu, J., Theory and Applications of Partial Functional-Differential Equations (1996), New York, NY, USA: Springer, New York, NY, USA · Zbl 0870.35116 · doi:10.1007/978-1-4612-4050-1
[31] Xu, R.; Gan, Q.; Ma, Z., Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delay, Journal of Computational and Applied Mathematics, 230, 1, 187-203 (2009) · Zbl 1186.34122 · doi:10.1016/j.cam.2008.11.009
[32] Song, Y.; Yuan, S., Bifurcation analysis in a predator-prey system with time delay, Nonlinear Analysis: Real World Applications, 7, 2, 265-284 (2006) · Zbl 1085.92052 · doi:10.1016/j.nonrwa.2005.03.002
[33] Song, Y.; Wei, J., Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, Journal of Mathematical Analysis and Applications, 301, 1, 1-21 (2005) · Zbl 1067.34076 · doi:10.1016/j.jmaa.2004.06.056
[34] Xiao, D.; Ruan, S., Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response, Journal of Differential Equations, 176, 2, 494-510 (2001) · Zbl 1003.34064 · doi:10.1006/jdeq.2000.3982
[35] Ruan, S., Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays, Quarterly of Applied Mathematics, 59, 1, 159-173 (2001) · Zbl 1035.34084
[36] Xu, R.; Chaplain, M. A. J.; Davidson, F. A., Periodic solutions for a delayed predator-prey model of prey dispersal in two-patch environments, Nonlinear Analysis: Real World Applications, 5, 1, 183-206 (2004) · Zbl 1066.92059 · doi:10.1016/S1468-1218(03)00032-4
[37] Liu, Z.; Yuan, R., Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response, Journal of Mathematical Analysis and Applications, 296, 2, 521-537 (2004) · Zbl 1051.34060 · doi:10.1016/j.jmaa.2004.04.051
[38] Fan, M.; Wang, K., Periodicity in a delayed ratio-dependent predator-prey system, Journal of Mathematical Analysis and Applications, 262, 1, 179-190 (2001) · Zbl 0994.34058 · doi:10.1006/jmaa.2001.7555
[39] Beretta, E.; Kuang, Y., Global analyses in some delayed ratio-dependent predator-prey systems, Nonlinear Analysis: Theory, Methods and Applications, 32, 3, 381-408 (1998) · Zbl 0946.34061 · doi:10.1016/S0362-546X(97)00491-4
[40] Zhao, T.; Kuang, Y.; Smith, H. L., Global existence of periodic solutions in a class of delayed gause-type predator-prey systems, Nonlinear Analysis: Theory, Methods and Applications, 28, 8, 1373-1394 (1997) · Zbl 0872.34047 · doi:10.1016/0362-546X(95)00230-S
[41] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Applications of Hopf Bifurcation (1981), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0474.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.