Skip to main content
Log in

Hopf bifurcation of a predator–prey system with predator harvesting and two delays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider the differential-algebraic predator–prey model with predator harvesting and two delays. By using the new normal form of differential-algebraic systems, center manifold theorem and bifurcation theory, we analyze the stability and the Hopf bifurcation of the proposed system. In addition, the new effective analytical method enriches the toolbox for the qualitative analysis of the delayed differential-algebraic systems. Finally, numerical simulations are given to show the consistency with theoretical analysis obtained here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator–prey type of interaction between two species. Biometrika 47, 219–234 (1960)

    MathSciNet  MATH  Google Scholar 

  2. Ma, Y.F.: Global Hopf bifurcation in the Leslie–Gower predator–prey model with two delays. Nonlinear Anal., Real World Appl. 13, 370–375 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, F.D., Chen, L.J., Xie, X.D.: On a Leslie–Gower predator–prey model incorporating a prey refuge. Nonlinear Anal., Real World Appl. 10, 2905–2908 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, N., Yuan, H.Q., Sun, H.Y., Zhang, Q.L.: An impulsive multi-delayed feedback control method for stabilizing discrete chaotic systems. Nonlinear Dyn. (2012). doi:10.1007/s11071-012-0434-y

    Google Scholar 

  5. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  6. Song, Y.L., Yuan, S.L.: Bifurcation analysis in a predator–prey system with time delay. Nonlinear Anal., Real World Appl. 7, 265–284 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ji, L.L., Wu, C.Q.: Qualitative analysis of a predator–prey model with constant rate prey harvesting incorporating a constant prey refuge. Nonlinear Anal., Real World Appl. 11, 2285–2295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Song, Y.L., Peng, Y.H., Wei, J.J.: Bifurcations for a predator–prey system with two delays. J. Math. Anal. Appl. 337, 466–479 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, J.L., Wu, H.N.: Synchronization criteria for impulsive complex dynamical networks with time-varying delay. Nonlinear Dyn. 70, 13–24 (2012)

    Article  MATH  Google Scholar 

  10. Kar, T.K., Pahari, U.K.: Non-selective harvesting in prey-predator models with delay. Commun. Nonlinear Sci. Numer. Simul. 11, 499–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wei, J.J., Ruan, S.G.: Stability and bifurcation in a neural network model with two delays. Physica D 130, 253–272 (1999)

    Article  MathSciNet  Google Scholar 

  12. Zhang, G.D., Shen, Y., Wang, L.M.: Global anti-synchronization of a class of chaotic memristive neural networks with time-varying delays. Neural Netw. 46, 1–8 (2013)

    Article  Google Scholar 

  13. Xiao, D.M., Li, W.X., Han, M.A.: Dynamics in a ratio-dependent predator–prey model with predator harvesting. J. Math. Anal. Appl. 324, 14–29 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, G.D., Shen, Y., Chen, B.S.: Positive periodic solutions in a non-selective harvesting predator–prey model with multiple delays. J. Math. Anal. Appl. 395, 298–306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kar, T.K., Ghorai, A.: Dynamic behaviour of a delayed predator–prey model with harvesting. Appl. Math. Comput. 217, 9085–9104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gordon, H.S.: Economic theory of a common property resource: the fishery. J. Polit. Econ. 62, 124–142 (1954)

    Article  Google Scholar 

  17. Zhang, G.D., Zhu, L.L., Chen, B.S.: Hopf bifurcation and stability for a differential-algebraic biological economic system. Appl. Math. Comput. 217, 330–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, G.D., Zhu, L.L., Chen, B.S.: Hopf bifurcation in a delayed differential-algebraic biological economic system. Nonlinear Anal., Real World Appl. 12, 1708–1719 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, X., Zhang, Q.L., Zhang, Y.: Bifurcations of a class of singular biological economic models. Chaos Solitons Fractals 40, 1309–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, B.S., Liao, X.X., Liu, Y.Q.: Normal forms and bifurcations for the difference-algebraic systems. Acta Math. Appl. Sin. 23, 429–433 (2000) (in Chinese)

    MathSciNet  MATH  Google Scholar 

  21. Faria, T., Magalhães, L.T.: Normal form for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122, 181–200 (1995)

    Article  MATH  Google Scholar 

  22. Faria, T., Magalhães, L.T.: Normal form for retarded functional differential equations and applications to Bogdanov-Takens singularity. J. Differ. Equ. 122, 201–224 (1995)

    Article  MATH  Google Scholar 

  23. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  24. Boothby, W.M.: An Introduction to Differential Manifolds and Riemannian Geometry, 2nd edn. Academic Press, New York (1986)

    Google Scholar 

  25. Cooke, K.L., Grossman, Z.: Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86, 592–627 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10, 863–874 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Hale, J.K., Lunel, S.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  28. Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge two anonymous referees’ comments and patient work. This work is supported by the National Science Foundation of China under Grant No. 11271146, the Key Program of National Natural Science Foundation of China under Grant No. 61134012, the Science and Technology Program of Wuhan under Grant No. 2013010501010117 and the Development Program of the Department of Science and Technology of Henan Province under Grant No. 122300410276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Shen, Y. & Chen, B. Hopf bifurcation of a predator–prey system with predator harvesting and two delays. Nonlinear Dyn 73, 2119–2131 (2013). https://doi.org/10.1007/s11071-013-0928-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0928-2

Keywords

Navigation