×

Dynamical behavior of a delayed prey-predator-scavenger system with fear effect and linear harvesting. (English) Zbl 1476.92038

Summary: In this paper, we propose a delayed prey-predator-scavenger system with fear effect and linear harvesting. First, we discuss the existence and stability of all possible equilibria. Next, we investigate the existence of Hopf bifurcation of the delayed system by regarding the gestation period of the scavenger as a bifurcation parameter. Furthermore, we obtain the direction of Hopf bifurcation and the stability of bifurcating periodic solutions by using the normal form theory and the central manifold theorem. In addition, we give the optimal harvesting strategy of the delayed system based on Pontryagin’s maximum principle with delay. Finally, some numerical simulations are carried out to verify our theoretical results.

MSC:

92D25 Population dynamics (general)
34D20 Stability of solutions to ordinary differential equations
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
49K21 Optimality conditions for problems involving relations other than differential equations
Full Text: DOI

References:

[1] Lotka, A. J., Elements of physical biology, Amer. J. Public Health21 (1926) 341-343.
[2] Volterra, V., Variations and fluctuations of the number of individuals in animal species living together, J. Du Conseil3 (1928) 3-51.
[3] Meng, X. Y., Huo, H. F. and Zhang, X. B., Stability and global Hopf bifurcation in a Leslie-Gower predator-prey model with stage structure for prey, J. Appl. Math. Comput.60 (2019) 1-25. · Zbl 1422.34243
[4] Yu, X. W., Yuan, S. L. and Zhang, T. H., Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling, Nonlinear Anal.: Hybrid Syst.34 (2019) 209-225. · Zbl 1435.34056
[5] Zhao, S. N., Yuan, S. L. and Wang, H., Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J. Differential Equations268(9) (2020) 5113-5139. · Zbl 1433.92045
[6] Arneodo, A., Coullet, P. and Tresser, C., Occurrence of strange attractors in three-dimensional Volterra equations, Phys. Lett. A79 (1980) 259-263.
[7] Klebanoff, A. and Hastings, A., Chaos in three species food chains, J. Math. Biol.32 (1994) 427-451. · Zbl 0823.92030
[8] Sander, E. and Yorke, J. A., Period-doubling cascades galore, Ergodic Theory Dynam. Systems31 (2011) 1249-1267. · Zbl 1223.37065
[9] Gakkhar, S. and Singh, A., Control of chaos due to additional predator in the Hastings-Powell food chain model, J. Math. Anal. Appl.385 (2012) 423-438. · Zbl 1225.37105
[10] X. Y. Meng, N. N. Qin and H. F. Huo, Dynamics of a food chain model with two infected predators, Internat. J. Bifur. Chaos, preprint (2020), doi:10.1142/ S021812742150019X. · Zbl 1459.92160
[11] Korobeinikov, A. and Wake, G. C., Global properties of the three-dimensional predator-prey Lotka-Volterra systems, J. Appl. Math. Decis. Sci.3 (1999) 155-162. · Zbl 0951.92031
[12] Misra, O. P. and Babu, A. R., Modelling effect of toxicant in a three-species food-chain system incorporating delay in toxicant uptake process by prey, Model. Earth Syst. Environ.2 (2016) 1-27.
[13] Wu, J., Analysis of a three-species stochastic delay predator-prey system with imprecise parameters, Methodol. Comput. Appl. Probab.21 (2019) 43-67. · Zbl 1411.60091
[14] Mohd, M. H., Diversity in interaction strength promotes rich dynamical behaviours in a three-species ecological system, Appl. Math. Comput.353 (2019) 243-253. · Zbl 1428.34053
[15] Wang, J. F. and Guo, X. X., Dynamics and pattern formations in a three-species predator-prey model with two prey-taxis, J. Math. Anal. Appl.475 (2019) 1054-1072. · Zbl 1414.35027
[16] Dong, F. D., Li, W. T. and Wang, J. B., Propagation dynamics in a three-species competition model with nonlocal anisotropic dispersal, Nonlinear Anal. Real World Appl.48 (2019) 232-266. · Zbl 1425.92153
[17] Jia, D. F., Zhang, T. H. and Yuan, S. L., Pattern dynamics of a diffusive toxin producing phytoplankton-zooplankton model with three-dimensional patch, Internat. J. Bifur. Chaos29 (2019) 1930011. · Zbl 1411.35257
[18] Nolting, B., Paullet, J. E. and Previte, J. P., Introducing a scavenger onto a predator prey model, Appl. Math. E-Notes8 (2008) 214-222. · Zbl 1153.92337
[19] Raj, M. ReniSagaya, Selvam, A. George Maria and Janagaraj, R., Dynamical behavior of discrete prey-predator system with scavenger, Int. J. Emer. Research Manage. Tech.2 (2013) 27-33.
[20] Previte, J. P. and Hoffman, K. A., Period doubling cascades in a predator-prey model with a scavenger, SIAM Rev.55 (2013) 523-546. · Zbl 1272.92054
[21] Gupta, R. P. and Chandra, P., Dynamical properties of a prey-predator-scavenger model with quadratic harvesting, Commun. Nonlinear Sci. Numer. Simul.49 (2017) 202-214. · Zbl 1524.37081
[22] Liu, C., Wang, L. P., Zhang, Q. L. and Li, Y. K., Modeling and dynamical analysis of a triple delayed prey-predator-scavenger system with Lévy jumps, Phys. A512 (2018) 1216-1239. · Zbl 1494.92101
[23] Satar, H. A. and Naji, R. K., Stability and bifurcation of a prey-predator-scavenger model in the existence of toxicant and harvesting, Int. J. Math. Math. Sci.4 (2019) 1573516. · Zbl 1486.92142
[24] Jansen, J. E. and Gorder, R. A. Var, Dynamics from a predator-prey-quarry-scavenger model, Theor. Ecol.11 (2018) 19-38.
[25] Satar, H. A. and Naji, R. K., Stability and bifurcation in a prey-predator-scavenger system with Michaelis-Menten type of harvesting function, Differential Equations Dynam. Systems2019 (2019) 1-24.
[26] Panja, P., Mondal, S. K. and Jana, D. K., Effects of toxicants on phytoplankton-zooplankton-fish dynamics and harvesting, Chaos Solitons Fractals104 (2017) 389-399. · Zbl 1380.92093
[27] P. Panja, Prey-predator-scavenger model with Monod-Haldane type functional response, Rend. Circ. Mat. Palermo, II, doi:10.1007/s12215-019-00462-9. · Zbl 1459.92012
[28] Panja, P., Jana, S. and Mondal, S. K., Affects of additional food on the dynamics of a three species food chain model incorporating refuge and harvesting, Int. J. Nonlinear Sci. Numer. Simul.20(7-8) (2019) 787-801. · Zbl 1464.92232
[29] Panja, P., Poria, S. and Mondal, S. K., Analysis of a harvested tritrophic food chain model in the presence of additional food for top predator, Int. J. Biomath.4 (2018), Article ID: 1850059, 29 pp. · Zbl 1390.92118
[30] Mortoja, S. G., Panja, P., Paul, A., Bhattacharya, S. and Mondal, S. K., Is the intermediate predator a key regulator of a tri-trophic food chain model?: An illustration through a new functional response, Chaos Solitons Fractals132 (2020) 109613. · Zbl 1434.92025
[31] Wang, X. Y., Zanette, L. and Zou, X. F., Modelling the fear effect in predator-prey interactions, J. Math. Biol.73 (2016) 1179-1204. · Zbl 1358.34058
[32] Wang, X. Y. and Zou, X. F., Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators, Bull. Math. Biol.79 (2017) 1325-1359. · Zbl 1372.92095
[33] Mondal, S., Maiti, A. and Samanta, G. P., Effects of fear and additional food in a delayed predator-prey model, Biophy. Rev. Lett.13 (2018) 157-177.
[34] Duan, D. F., Niu, B. and Wei, J. J., Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect, Chaos Solitons Fractals123 (2019) 206-216. · Zbl 1448.35029
[35] Zhang, H. S., Cai, Y. L., Fu, S. M. and Wang, W. M., Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput.356 (2019) 328-337. · Zbl 1428.92099
[36] Deng, L. W., Wang, X. D. and Peng, M., Hopf bifurcation analysis for a ratio-dependent predator-prey system with two delays and stage structure for the predator, Appl. Math. Comput.231 (2014) 214-230. · Zbl 1410.37071
[37] Wang, L. S. and Feng, G. H., Global dynamics of a delayed predator-prey model with stage structure for the predator and the prey, Math. Method. Appl. Sci.38 (2015) 3937-3949. · Zbl 1336.34117
[38] Li, A., Song, Y. L. and Xu, D. F., Dynamical behavior of a predator-prey system with two delays and stage structure for the prey, Nonlinear Dynam.85 (2016) 2017-2033. · Zbl 1349.37089
[39] Meng, X. Y. and Wu, Y. Q., Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Internat. J. Bifur. Chaos28 (2018) 1850042. · Zbl 1388.34075
[40] Dubey, B. and Kumar, A., Dynamics of prey-predator model with stage structure in prey including maturation and gestation delays, Nonlinear Dynam.96 (2019) 2653-2679. · Zbl 1468.92055
[41] Meng, X. Y. and Wu, Y. Q., Bifurcation analysis in a singular Beddington-DeAngelis predator-prey model with two delays and nonlinear predator harvesting, Math. Biosci. Eng.16 (2019) 2668-2696. · Zbl 1501.92121
[42] Meng, X. Y. and Wang, J. G., Analysis of a delayed diffusive model with Beddington-DeAngelis functional response, Int. J. Biomath.12 (2019) 1950047. · Zbl 1418.35030
[43] Meng, X. Y. and Li, J., Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting, Math. Biosci. Eng.17 (2020) 1973-2002. · Zbl 1470.92252
[44] Huo, H. F., Yang, Q. and Xiang, H., Dynamics of an edge-based SEIR model for sexually transmitted diseases, Math. Biosci. Eng.17 (2020) 669-699. · Zbl 1470.92305
[45] Zhang, X. B. and Zhao, H. Y., Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters, J. Theor. Biol.363 (2014) 390-403. · Zbl 1317.92068
[46] Zhao, H. Y., Huang, X. X. and Zhang, X. B., Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms, Phys. A421 (2015) 300-315. · Zbl 1395.37060
[47] Hu, D. P. and Cao, H. J., Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. Real World Appl.33 (2017) 58-82. · Zbl 1352.92125
[48] Zhang, X. B., Chang, S. Q. and Huo, H. F., Dynamic behavior of a stochastic sir epidemic model with vertical transmission, Electron. J. Differential Equations2019 (2019) 1-20. · Zbl 1425.34039
[49] Song, Y. L. and Wei, J. J., Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos, Chaos Solitons Fractals22 (2004) 75-91. · Zbl 1112.37303
[50] Hassard, B. D., Kazarinoff, N. D. and Wan, Y. H., Theory and Applications of Hopf Bifurcation (Cambridge University Press, Cambridge, 1981). · Zbl 0474.34002
[51] Clark, C. W., Mathematical Bioeconomics: Optimal Management of Renewable Resources (Wiley, New York, 1976). · Zbl 0364.90002
[52] Clark, C. W., Bioeconomic Modelling and Fisheries Management (Wiley, New York, 1985).
[53] Zaman, G., Kang, Y. H. and Jung, I. H., Optimal treatment of an SIR epidemic model with time delay, BioSystems98 (2009) 43-50.
[54] Bashier, E. B. M. and Patidar, K. C., Optimal control of an epidemiological model with multiple time delays, Appl. Math. Comput.292 (2017) 47-56. · Zbl 1410.49022
[55] Göllmann, L., Kern, D. and Maurer, H., Optimal control problems with delays in state and control variables subject to mixed control-state constraints, Optimal Control Appl. Methods30 (2009) 341-442.
[56] van Straten, G., van Henten, E. J., van Willigenburg, L. G. and van Ooteghem, R. J. C., Optimal Control of Greenhouse Cultivation (The Chemical Rubber Company Press, Boca Raton, 2010).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.