×

Global existence and blowup in infinite time for a fourth order wave equation with damping and logarithmic strain terms. (English) Zbl 1480.35045

Summary: We consider the well-posedness of solution of the initial boundary value problem to the fourth order wave equation with the strong and weak damping terms, and the logarithmic strain term, which was introduced to describe many complex physical processes. The local solution is obtained with the help of the Galerkin method and the contraction mapping principle. The global solution and the blowup solution in infinite time under sub-critical initial energy are also established, and then these results are extended in parallel to the critical initial energy. Finally, the infinite time blowup of solution is proved at the arbitrary positive initial energy.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
35B45 A priori estimates in context of PDEs
35L35 Initial-boundary value problems for higher-order hyperbolic equations
35L76 Higher-order semilinear hyperbolic equations
Full Text: DOI

References:

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam), 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. · Zbl 1098.46001
[2] C. Alves; A. Moussaoui; L. Tavares, An elliptic system with logarithmic nonlinearity, Adv. Nonlinear Anal., 8, 928-945 (2019) · Zbl 1429.35096 · doi:10.1515/anona-2017-0200
[3] L. J. An, Loss of hyperbolicity in elastic-plastic material at finite strains, SIAM J. Appl. Math., 53, 621-654 (1993) · Zbl 0778.73026 · doi:10.1137/0153032
[4] L. J. An; A. Peirce, The effect of microstructure on elastic-plastic models, SIAM J. Appl. Math., 54, 708-730 (1994) · Zbl 0805.35139 · doi:10.1137/S0036139992238498
[5] L. J. An; A. Peirce, A weakly nonlinear analysis of elastoplastic-microstructure models, SIAM J. Appl. Math., 55, 136-155 (1995) · Zbl 0815.73022 · doi:10.1137/S0036139993255327
[6] G. Andrews, On the existence of solutions to the equation \(u_tt = u_xxt+\sigma (u_x)_x\), J. Differential Equations, 35, 200-231 (1980) · Zbl 0415.35018 · doi:10.1016/0022-0396(80)90040-6
[7] F. P. Bretherton, Resonant interactions between waves. The case of discrete oscillations, J. Fluid Mech., 20, 457-479 (1964) · doi:10.1017/S0022112064001355
[8] E. Brué; Q.-H. Nguyen, On the Sobolev space of functions with derivative of logarithmic order, Adv. Nonlinear Anal., 9, 836-849 (2020) · Zbl 1437.46038 · doi:10.1515/anona-2020-0027
[9] P. Bugiel; S. A. Wedrychowicz; B. Rzepka, Fixed point of some Markov operator of Frobenius-Perron type generated by a random family of point-transformations in \(\Bbb R^d\), Adv. Nonlinear Anal., 10, 972-981 (2021) · Zbl 1473.37066 · doi:10.1515/anona-2020-0163
[10] H. Buljan, A. Šiber, M. Soljačić, T. Schwartz, M. Segev and D. N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E (3), 68 (2003), 036607, 6 pp.
[11] H. Chen; H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39, 1185-1203 (2019) · Zbl 1404.35233 · doi:10.3934/dcds.2019051
[12] Y. Chen and R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal., 192 (2020), 111664, 39 pp. · Zbl 1436.35257
[13] I. Chueshov; I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15, 777-809 (2006) · Zbl 1220.35014 · doi:10.3934/dcds.2006.15.777
[14] I. Chueshov; I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Comm. Partial Differential Equations, 36, 67-99 (2011) · Zbl 1217.35034 · doi:10.1080/03605302.2010.484472
[15] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 493-516 (1998) · Zbl 0911.35009 · doi:10.1016/S0294-1449(98)80032-2
[16] S. De Martino; M. Falanga; C. Godano; G. Lauro, Logarithmic Schrödinger-like equation as a model for magma transport, EPL, 63, 472-475 (2003) · doi:10.1209/epl/i2003-00547-6
[17] H. Di; Y. Shang; J. Yu, Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source, Electron. Res. Arch., 28, 221-261 (2020) · Zbl 1447.35214 · doi:10.3934/era.2020015
[18] Z. Ding, Traveling waves in a suspension bridge system, SIAM J. Math. Anal., 35, 160-171 (2003) · Zbl 1039.35128 · doi:10.1137/S0036141002412690
[19] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97, 1061-1083 (1975) · Zbl 0318.46049 · doi:10.2307/2373688
[20] W. He; D. Qin; Q. Wu, Existence, multiplicity and nonexistence results for Kirchhoff type equations, Adv. Nonlinear Anal., 10, 616-635 (2021) · Zbl 1466.35161 · doi:10.1515/anona-2020-0154
[21] A. C. Lazer; P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4, 243-274 (1987) · Zbl 0633.34037 · doi:10.1016/S0294-1449(16)30368-7
[22] G. Li; Y. Chen; Y. Huang, A hybridized weak Galerkin finite element scheme for general second-order elliptic problems, Electron. Res. Arch., 28, 821-836 (2020) · Zbl 1462.65194 · doi:10.3934/era.2020042
[23] W. Lian; M. S. Ahmed; R. Xu, Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity, Opuscula Math., 40, 111-130 (2020) · Zbl 1441.35174 · doi:10.7494/OpMath.2020.40.1.111
[24] W. Lian; V. D. Rădulescu; R. Xu; Y. Yang; N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14, 589-611 (2021) · Zbl 1476.35048 · doi:10.1515/acv-2019-0039
[25] W. Lian; J. Wang; R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269, 4914-4959 (2020) · Zbl 1448.35322 · doi:10.1016/j.jde.2020.03.047
[26] W. Lian; R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9, 613-632 (2020) · Zbl 1421.35222 · doi:10.1515/anona-2020-0016
[27] E. H. Lieb and M. Loss, Analysis, vol. 14 of Graduate Studies in Mathematics, 2nd edition, American Mathematical Society, Providence, RI, 2001. · Zbl 0966.26002
[28] Q. Lin; X. Tian; R. Xu; M. Zhang, Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy, Discrete Contin. Dyn. Syst. Ser. S, 13, 2095-2107 (2020) · Zbl 1448.35551 · doi:10.3934/dcdss.2020160
[29] A. Linde, Strings, textures, inflation and spectrum bending, Phys. Lett. B, 284, 215-222 (1992) · doi:10.1016/0370-2693(92)90423-2
[30] X. Liu; J. Zhou, Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity, Electron. Res. Arch., 28, 599-625 (2020) · Zbl 1442.35247 · doi:10.3934/era.2020032
[31] Y. Liu; R. Xu, Fourth order wave equations with nonlinear strain and source terms, J. Math. Anal. Appl., 331, 585-607 (2007) · Zbl 1113.35113 · doi:10.1016/j.jmaa.2006.09.010
[32] P. J. McKenna; W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal., 98, 167-177 (1987) · Zbl 0676.35003 · doi:10.1007/BF00251232
[33] R. L. Pego, Phase transitions in one-dimensional nonlinear viscoelasticity: Admissibility and stability, Arch. Rational Mech. Anal., 97, 353-394 (1987) · Zbl 0648.73017 · doi:10.1007/BF00280411
[34] J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth-order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043, 8 pp. · Zbl 1272.35048
[35] M.-P. Tran; T.-N. Nguyen, Pointwise gradient bounds for a class of very singular quasilinear elliptic equations, Discrete Contin. Dyn. Syst., 41, 4461-4476 (2021) · Zbl 1466.35231 · doi:10.3934/dcds.2021043
[36] V. V. Varlamov, On the initial-boundary value problem for the damped Boussinesq equation, Discrete Contin. Dynam. Systems, 4, 431-444 (1998) · Zbl 0952.35103 · doi:10.3934/dcds.1998.4.431
[37] X. Wang; R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10, 261-288 (2021) · Zbl 1447.35078 · doi:10.1515/anona-2020-0141
[38] Y. Wang; Y. Wang, On the initial-boundary problem for fourth order wave equations with damping, strain and source terms, J. Math. Anal. Appl., 405, 116-127 (2013) · Zbl 1310.35175 · doi:10.1016/j.jmaa.2013.03.060
[39] R. Xu; W. Lian; X. Kong; Y. Yang, Fourth order wave equation with nonlinear strain and logarithmic nonlinearity, Appl. Numer. Math., 141, 185-205 (2019) · Zbl 1421.35204 · doi:10.1016/j.apnum.2018.06.004
[40] R. Xu; W. Lian; Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63, 321-356 (2020) · Zbl 1431.35063 · doi:10.1007/s11425-017-9280-x
[41] R. Xu; J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264, 2732-2763 (2013) · Zbl 1279.35065 · doi:10.1016/j.jfa.2013.03.010
[42] R. Xu, X. Wang, Y. Yang and S. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503, 27 pp. · Zbl 1395.35137
[43] Y. Yang; M. Salik Ahmed; L. Qin; R. Xu, Global well-posedness of a class of fourth-order strongly damped nonlinear wave equations, Opuscula Math., 39, 297-313 (2019) · Zbl 1437.35454 · doi:10.7494/OpMath.2019.39.2.297
[44] Y. Zeng; K. Zhao, On the logarithmic Keller-Segel-Fisher/KPP system, Discrete Contin. Dyn. Syst., 39, 5365-5402 (2019) · Zbl 1415.35267 · doi:10.3934/dcds.2019220
[45] M. Zhang; Q. Zhao; Y. Liu; W. Li, Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition, Electron. Res. Arch., 28, 369-381 (2020) · Zbl 1447.35197 · doi:10.3934/era.2020021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.