×

Global well-posedness of coupled parabolic systems. (English) Zbl 1431.35063

Summary: The initial boundary value problem of a class of reaction-diffusion systems (coupled parabolic systems) with nonlinear coupled source terms is considered in order to classify the initial data for the global existence, finite time blowup and long time decay of the solution. The whole study is conducted by considering three cases according to initial energy: the low initial energy case, critical initial energy case and high initial energy case. For the low initial energy case and critical initial energy case the suffcient initial conditions of global existence, long time decay and finite time blowup are given to show a sharp-like condition. In addition, for the high initial energy case the possibility of both global existence and finite time blowup is proved first, and then some suffcient initial conditions of finite time blowup and global existence are obtained, respectively.

MSC:

35K51 Initial-boundary value problems for second-order parabolic systems
35K40 Second-order parabolic systems
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Alaa, N., Global existence for reaction-diffusion systems with mass control and critical growth with respect to the gradient, J Math Anal Appl, 253, 532-557 (2001) · Zbl 0963.35078
[2] Bai, X., Finite time blow-up for a reaction-diffusion system in bounded domain, Z Angew Math Phys, 65, 135-138 (2014) · Zbl 1295.35121
[3] Ball, J. M., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Q J Math, 28, 473-486 (1977) · Zbl 0377.35037
[4] Bebernes, J.; Eberly, D., Mathematical Problems from Combustion Theory (1989), New York: Springer-Verlag, New York · Zbl 0692.35001
[5] Bedjaoui, N.; Souplet, P., Critical blowup exponents for a system of reaction-diffusion equations with absorption, Z Angew Math Phys, 53, 197-210 (2002) · Zbl 0996.35029
[6] Cazenave, T.; Lions, P. L., Solutions globales d’équations de la chaleur semi linéaies, Comm Partial Differential Equations, 9, 955-978 (1984) · Zbl 0555.35067
[7] Chen, H. W., Global existence and blow-up for a nonlinear reaction-diffusion system, J Math Anal Appl, 212, 481-492 (1997) · Zbl 0884.35068
[8] Dancer, E. N.; Wang, K.; Zhang, Z., Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, J Differential Equations, 251, 2737-2769 (2011) · Zbl 1270.35043
[9] Dickstein, F.; Escobedo, M., A maximum principle for semilinear parabolic systems and applications, Nonlinear Anal, 45, 825-837 (2001) · Zbl 0986.35044
[10] Duong, A. T.; Phan, D. H., A Liouville-type theorem for cooperative parabolic systems, Discrete Contin Dyn Syst, 38, 823-833 (2018) · Zbl 1379.35044
[11] Escobedo, M.; Herrero, M. A., Boundedness and blow up for a semilinear reaction-diffusion system, J Differential Equations, 89, 176-202 (1991) · Zbl 0735.35013
[12] Escobedo, M.; Herrero, M. A., A semilinear parabolic system in a bounded domain, Ann Mat Pura Appl (4), 165, 315-336 (1993) · Zbl 0806.35088
[13] Escobedo, M.; Levine, H. A., Critical blowup and global existence numbers for a weakly coupled system of reactiondi ffusion equations, Arch Ration Mech Anal, 129, 47-100 (1995) · Zbl 0822.35068
[14] Galaktionov, V. A.; Kurdyumov, S. P.; Samarski, A. A., A parabolic system of quasilinear equations I, Differ Uravn, 19, 2123-2143 (1983)
[15] Galaktionov, V. A.; Kurdyumov, S. P.; Samarski, A. A., A parabolic system of quasilinear equations II, Differ Uravn, 21, 1544-1559 (1985) · Zbl 0599.35085
[16] Gazzola, F.; Weth, T., Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, 18, 961-990 (2005) · Zbl 1212.35248
[17] Gu, Y. G.; Wang, M. X., A semilinear parabolic system arising in the nuclear reactors, Chinese Sci Bull, 39, 1588-1592 (1994) · Zbl 0838.35060
[18] Hoshino, H.; Yamada, Y., Solvability and smoothing effect for semilinear parabolic equations, Funkcial Ekvac, 34, 475-494 (1991) · Zbl 0757.35033
[19] Kwembe, T. A.; Zhang, Z. B., A semilinear parabolic system with generalized Wentzell boundary condition, Nonlinear Anal, 75, 3078-3091 (2012) · Zbl 1242.35139
[20] Ladyzenskaja, O. A.; Solonnikov, V. A.; Ural’Ceva, N. N., Linear and Quasilinear Equations of Parabolic Type (1968), Providence: Amer Math Soc, Providence · Zbl 0174.15403
[21] Levine, H. A., Instability and non-existence of global solutions to nonlinear wave equations of the form Putt = Au + F(u), Trans Amer Math Soc, 192, 1-21 (1974) · Zbl 0288.35003
[22] Li, H. L.; Wang, M. X., Critical exponents and lower bounds of blow-up rate for a reaction-diffusion system, Nonlinear Anal, 63, 1083-1093 (2005) · Zbl 1112.35089
[23] Liu, W. J., Global existence, asymptotic behavior and blow-up of solutions for coupled Klein-Gordon equations with damping terms, Nonlinear Anal, 73, 244-255 (2010) · Zbl 1194.35250
[24] Liu, Y. C.; Zhao, J. S., On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal, 64, 2665-2687 (2006) · Zbl 1096.35089
[25] Pao, C. V., On nonlinear reaction-diffusion systems, J Math Anal Appl, 87, 165-198 (1982) · Zbl 0488.35043
[26] Pao, C. V., Nonlinear Parabolic and Elliptic Equations, New York: Plenum Press (1992) · Zbl 0777.35001
[27] Payne, L. E.; Sattinger, D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel^J Math, 22, 273-303 (1975) · Zbl 0317.35059
[28] Quiros, F.; Rossi, J. D., Non-simultaneous blow-up in a semilinear parabolic system, Z Angew Math Phys, 52, 342-346 (2001) · Zbl 0990.35057
[29] Quittner, P., Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston^J Math, 29, 757-799 (2003) · Zbl 1034.35013
[30] Rossi, J. D.; Souplet, P., Coexistence of simultaneous and nonsimultaneous blow-up in a semilinear parabolic system, Differential Integral Equations, 18, 405-418 (2005) · Zbl 1212.35219
[31] Sato, S., Life span of solutions with large initial data for a semilinear parabolic system, J Math Anal Appl, 380, 632-641 (2011) · Zbl 1219.35027
[32] Simon, L., Asymptotics for a class of nonlinear evolution equations with applications to geometric problems, Ann of Math (2), 118, 525-571 (1983) · Zbl 0549.35071
[33] Souplet, P.; Tayachi, S., Optimal condition for non-simultaneous blow-up in a reaction-diffusion system, J Math Soc Japan, 56, 571-584 (2004) · Zbl 1059.35049
[34] Wang, M. X., Global existence and finite time blow up for a reaction-diffusion system, Z Angew Math Phys, 51, 160-167 (2000) · Zbl 0984.35088
[35] Wu, S. T., Global existence, blow-up and asymptotic behavior of solutions for a class of coupled nonlinear Klein-Gordon equations with damping terms, Acta Appl Math, 11, 75-95 (2012) · Zbl 1259.35134
[36] Xu, R. Z., Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart Appl Math, 68, 459-468 (2010) · Zbl 1200.35035
[37] Xu, R. Z.; Niu, Y., Addendum toλobal existence and finite time blow-up for a class of semilinear pseudo-parabolic equations” [J Funct Anal, 2013, 264: 2732-2763], J Funct Anal, 270, 4039-4041 (2016) · Zbl 1386.35247
[38] Xu, R. Z.; Su, J., Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J Funct Anal, 264, 2732-2763 (2013) · Zbl 1279.35065
[39] Xu, X.; Ye, Z., Life span of solutions with large initial data for a class of coupled parabolic systems, Z Angew Math Phys, 64, 705-717 (2013) · Zbl 1270.35138
[40] Yang, J. K.; Cao, Y.; Zheng, S. N., Fujita phenomena in nonlinear pseudo-parabolic system, Sci China Math, 57, 555-568 (2014) · Zbl 1396.35041
[41] Zhang, Y., Uniform boundedness and convergence of global solutions to a strongly-coupled parabolic system with three competitive species, Appl Math Comput, 221, 720-726 (2013) · Zbl 1329.92122
[42] Zou, H., Blow-up rates for semi-linear reaction-diffusion systems, J Differential Equations, 257, 843-867 (2014) · Zbl 1293.35058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.