×

An elliptic system with logarithmic nonlinearity. (English) Zbl 1429.35096

Authors’ abstract: In the present paper, we study the existence of solutions for some classes of singular systems involving the \(\Delta_{p(x)}\) and \(\Delta_{q(x)}\) Laplacian operators. The approach is based on bifurcation theory and the sub-supersolution method for systems of quasilinear equations involving singular terms.

MSC:

35J75 Singular elliptic equations
35J48 Higher-order elliptic systems
35J92 Quasilinear elliptic equations with \(p\)-Laplacian

References:

[1] E. Acerbi and G. Mingione, Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal. 164 (2002), 213-259.; Acerbi, E.; Mingione, G., Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., 164, 213-259 (2002) · Zbl 1038.76058
[2] E. Acerbi and G. Mingione, Regularity results for electrorheological fluids: Stationary case, C. R. Math. Acad. Sci. Paris 334 (2002), 817-822.; Acerbi, E.; Mingione, G., Regularity results for electrorheological fluids: Stationary case, C. R. Math. Acad. Sci. Paris, 334, 817-822 (2002) · Zbl 1017.76098
[3] C. O. Alves and A. Moussaoui, Existence and regularity of solutions for a class of singular \((p(x),q(x))\)-Laplacian systems, Complex Var. Elliptic Equ. (2017), 10.1080/17476933.2017.1298589.; Alves, C. O.; Moussaoui, A., Existence and regularity of solutions for a class of singular \((p(x),q(x))\)-Laplacian systems, Complex Var. Elliptic Equ. (2017) · Zbl 1394.35194 · doi:10.1080/17476933.2017.1298589
[4] S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), 19-36.; Antontsev, S. N.; Rodrigues, J. F., On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52, 19-36 (2006) · Zbl 1117.76004
[5] S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and Their Inequalities, Comparaison Principles and Applications, Springer, New York, 2007.; Carl, S.; Le, V. K.; Motreanu, D., Nonsmooth Variational Problems and Their Inequalities, Comparaison Principles and Applications (2007) · Zbl 1109.35004
[6] A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems, Numer. Math. 76 (1997), 167-188.; Chambolle, A.; Lions, P. L., Image recovery via total variation minimization and related problems, Numer. Math., 76, 167-188 (1997) · Zbl 0874.68299
[7] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406.; Chen, Y.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 1383-1406 (2006) · Zbl 1102.49010
[8] O. S. de Queiroz, A Neumann problem with logarithmic nonlinearity in a ball, Nonlinear Anal. 70 (2009), no. 4, 1656-1662.; de Queiroz, O. S., A Neumann problem with logarithmic nonlinearity in a ball, Nonlinear Anal., 70, 4, 1656-1662 (2009) · Zbl 1170.35427
[9] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005), 306-317.; Fan, X.; Zhang, Q.; Zhao, D., Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302, 306-317 (2005) · Zbl 1072.35138
[10] X. L. Fan, On the sub-supersolution method for \(p(x)\)-Laplacian equations, J. Math. Anal. Appl. 330 (2007), 665-682.; Fan, X. L., On the sub-supersolution method for \(p(x)\)-Laplacian equations, J. Math. Anal. Appl., 330, 665-682 (2007) · Zbl 1206.35103
[11] X. L. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for \(p(x)\)-Laplace equations, Chinese J. Contemp. Math. 24 (2003), no. 3, 1-7.; Fan, X. L.; Zhao, Y. Z.; Zhang, Q. H., A strong maximum principle for \(p(x)\)-Laplace equations, Chinese J. Contemp. Math., 24, 3, 1-7 (2003) · Zbl 1112.35079
[12] L. C. Ferreira and O. S. de Queiroz, A singular parabolic equation with logarithmic nonlinearity and \(L^p\)-initial data, J. Differential Equations 249 (2010), no. 2, 349-365.; Ferreira, L. C.; de Queiroz, O. S., A singular parabolic equation with logarithmic nonlinearity and \(L^p\)-initial data, J. Differential Equations, 249, 2, 349-365 (2010) · Zbl 1197.35154
[13] O. Kavian, Inegalité de Hardy-Sobolev et applications, Thése de Doctorate de 3eme cycle, Université de Paris VI, 1978.; Kavian, O., Inegalité de Hardy-Sobolev et applications (1978) · Zbl 0374.46031
[14] M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929-2937.; Mihăilescu, M.; Rădulescu, V., On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135, 9, 2929-2937 (2007) · Zbl 1146.35067
[15] J. Mo and Z. Yang, Existence of solutions to p-Laplace equations with logarithmic nonlinearity, Electron. J. Differential Equations 87 (2009), 1-10.; Mo, J.; Yang, Z., Existence of solutions to p-Laplace equations with logarithmic nonlinearity, Electron. J. Differential Equations, 87, 1-10 (2009) · Zbl 1175.35067
[16] M. Montenegro and O. S. de Queiroz, Existence and regularity to an elliptic equation with logarithmic nonlinearity, J. Differential Equations 246 (2009), no. 2, 482-511.; Montenegro, M.; de Queiroz, O. S., Existence and regularity to an elliptic equation with logarithmic nonlinearity, J. Differential Equations, 246, 2, 482-511 (2009) · Zbl 1155.35045
[17] J. Necas, Introduction to the Theory of Nonlinear Elliptic Equations, John Willey & Sons, Chichester, 1983.; Necas, J., Introduction to the Theory of Nonlinear Elliptic Equations (1983) · Zbl 0526.35003
[18] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.; Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7, 487-513 (1971) · Zbl 0212.16504
[19] V. Rădulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlinear Anal. 121 (2015), 336-369.; Rădulescu, V., Nonlinear elliptic equations with variable exponent: Old and new, Nonlinear Anal., 121, 336-369 (2015) · Zbl 1321.35030
[20] V. Rădulescu and D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal. 75 (2012), no. 3, 1524-1530.; Rădulescu, V.; Repovš, D., Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75, 3, 1524-1530 (2012) · Zbl 1237.35043
[21] V. Rădulescu and D. Repovš, Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monogr. Res. Notes Math., CRC Press, Boca Raton, 2015.; Rădulescu, V.; Repovš, D., Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis (2015) · Zbl 1343.35003
[22] D. Repovš, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. (Singap.) 13 (2015), no. 6, 645-661.; Repovš, D., Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. (Singap.), 13, 6, 645-661 (2015) · Zbl 1331.35139
[23] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000.; Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory (2000) · Zbl 0968.76531
[24] H. Yin and Z. Yang, Existence and asymptotic behavior of positive solutions for a class of \((p(x),q(x))\)-Laplacian systems, Differ. Equ. Appl. 6 (2014), 403-415.; Yin, H.; Yang, Z., Existence and asymptotic behavior of positive solutions for a class of \((p(x),q(x))\)-Laplacian systems, Differ. Equ. Appl., 6, 403-415 (2014) · Zbl 1309.35023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.