×

Global solutions and finite time blow-up for fourth order nonlinear damped wave equation. (English) Zbl 1395.35137

Summary: In this paper, we study the initial boundary value problem and global well-posedness for a class of fourth order wave equations with a nonlinear damping term and a nonlinear source term, which was introduced to describe the dynamics of a suspension bridge. The global existence, decay estimate, and blow-up of solution at both subcritical (\(E(0) < d\)) and critical (\(E(0) = d\)) initial energy levels are obtained. Moreover, we prove the blow-up in finite time of solution at the supercritical initial energy level (\(E(0) > 0\)).{
©2018 American Institute of Physics}

MSC:

35L35 Initial-boundary value problems for higher-order hyperbolic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B44 Blow-up in context of PDEs
35P20 Asymptotic distributions of eigenvalues in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Autuori, G.; Colasuonno, F.; Pucci, P., Lifespan estimates for solutions of polyharmonic Kirchhoff systems, Math. Models Methods Appl. Sci., 22, 1150009, (2012) · Zbl 1320.35092 · doi:10.1142/s0218202511500096
[2] Brownjohn, J. M. W., Observations on non-linear dynamic characteristics of suspension bridges, Earthquake Eng. Struct. Dyn., 23, 1351-1367, (1994) · doi:10.1002/eqe.4290231206
[3] Damascelli, L., Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. Henri Poincare (C) Non Linear Anal., 15, 493-516, (1998) · Zbl 0911.35009 · doi:10.1016/s0294-1449(98)80032-2
[4] Ferrero, A.; Gazzola, F., A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., 35, 5879-5908, (2015) · Zbl 1336.35012 · doi:10.3934/dcds.2015.35.5879
[5] Gazzola, F.; Squassina, M., Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. Henri Poincare (C) Non Linear Anal., 23, 185-207, (2006) · Zbl 1094.35082 · doi:10.1016/j.anihpc.2005.02.007
[6] Gazzola, F., Nonlinearity in oscillating bridges, Electron. J. Differ. Equations, 2013, 1-47, (2013) · Zbl 1302.74022
[7] Lacarbonara, W., Nonlinear Structural Mechanics, (2013), Springer: Springer, New York · Zbl 1263.74001
[8] Lazer, A. C.; McKenna, P. J., Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. Henri Poincare (C) Non Linear Anal., 4, 243-274, (1987) · Zbl 0633.34037 · doi:10.1016/s0294-1449(16)30368-7
[9] Lazer, A. C.; McKenna, P. J., Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev., 32, 537-578, (1990) · Zbl 0725.73057 · doi:10.1137/1032120
[10] Levine, H. A., Instability and nonexistence of global solutions to nonlinear wave equations of the form Pu_{tt} = −Au + F(u), Trans. Am. Math. Soc., 192, 1-21, (1974) · Zbl 0288.35003 · doi:10.2307/1996814
[11] Levine, H. A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5, 138-146, (1974) · Zbl 0243.35069 · doi:10.1137/0505015
[12] Liu, Y. C.; Xu, R. Z., A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differ. Equations, 244, 200-228, (2008) · Zbl 1138.35066 · doi:10.1016/j.jde.2007.10.015
[13] McKenna, P. J.; Walter, W., Nonlinear oscillations in a suspension bridge, Arch. Ration. Mech. Anal., 98, 167-177, (1987) · Zbl 0676.35003 · doi:10.1007/bf00251232
[14] McKenna, P. J.; Walter, W., Travelling waves in a suspension bridge, SIAM J. Appl. Math., 50, 703-715, (1990) · Zbl 0699.73038 · doi:10.1137/0150041
[15] Nakao, M., Asymptotic stability of the bounded or almost periodic solutions of the wave equations with nonlinear damping terms, J. Math. Anal. Appl., 58, 336-343, (1977) · Zbl 0347.35013 · doi:10.1016/0022-247x(77)90211-6
[16] Nakao, M., Global existence and decay for nonlinear dissipative wave equations with a derivative nonlinearity, Nonlinear Anal.: Theory, Methods Appl., 75, 2236-2248, (2012) · Zbl 1237.35009 · doi:10.1016/j.na.2011.10.022
[17] Payne, L. E.; Sattinger, D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22, 273-303, (1975) · Zbl 0317.35059 · doi:10.1007/bf02761595
[18] Plaut, R. H.; Davis, F. M., Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges, J. Sound Vib., 307, 894-905, (2007) · doi:10.1016/j.jsv.2007.07.036
[19] Sattinger, D. H., On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30, 148-172, (1968) · Zbl 0159.39102 · doi:10.1007/bf00250942
[20] Ventsel, E.; Krauthammer, T., Thin Plates and Shells: Theory, Analysis and Applications, (2001), Marcel Dekker, Inc.: Marcel Dekker, Inc., New York
[21] Wang, Y., Finite time blow-up and global solutions for fourth order damped wave equations, J. Math. Anal. Appl., 418, 713-733, (2014) · Zbl 1310.35046 · doi:10.1016/j.jmaa.2014.04.015
[22] Xu, R. Z., Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Q. Appl. Math., 68, 3, 459-468, (2010) · Zbl 1200.35035 · doi:10.1090/s0033-569x-2010-01197-0
[23] Xu, R. Z.; Su, J., Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264, 2732-2763, (2013) · Zbl 1279.35065 · doi:10.1016/j.jfa.2013.03.010
[24] Xu, R. Z.; Yang, Y. B.; Liu, B. W.; Shen, J. H.; Huang, S. B., Global existence and blowup of solutions for the multidimensional sixth-order ‘good’ Boussinesq equation, Z. Angew. Math. Phys., 66, 955-976, (2015) · Zbl 1320.35290 · doi:10.1007/s00033-014-0459-9
[25] Xu, R. Z.; Niu, Y., Addendum to ‘Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations’ [J. Func. Anal. 264(12) (2013) 2732-2763], J. Funct. Anal., 270, 4039-4041, (2016) · Zbl 1386.35247 · doi:10.1016/j.jfa.2016.02.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.