×

Influence of Bartnett-London and Einstein-de Haas effects on the motion of the nonholonomic sphere of Routh. (Russian. English summary) Zbl 1479.37067

Summary: We consider the rolling of an unbalanced dynamically symmetric ball along a plane without slipping in the presence of an external magnetic field. We assume that the ball may be wholly or partially composed of dielectric, ferromagnetic, or superconducting materials. According to the existing phenomenological theory, in this case, when studying the dynamics of a ball, it is required to take into account the Lorentz force moment, Barnett-London moment, and Einstein-de Haas moment. Within the framework of this mathematical model, we obtain the conditions for the existence of integrals of motion, which allow us to reduce the integration of equations of motion to a quadrature similar to the Lagrange quadrature for a heavy rigid body.

MSC:

37J60 Nonholonomic dynamical systems
70F25 Nonholonomic systems related to the dynamics of a system of particles
74F15 Electromagnetic effects in solid mechanics

References:

[1] A. M. Ampere, “Sur deux Mémoires lus par M. Ampère à l”Académie royale des Sciences“, Journal de Physique, de Chimie et d”Histoire Naturelle, 92 (1821), 160-165
[2] S. J. Barnett, “On magnetization by angular acceleration”, Science, 30:769 (1909), 413 · doi:10.1126/science.30.769.413
[3] S. J. Barnett, “Magnetization by rotation”, Physical Review, 6:4 (1915), 239-270 · doi:10.1103/PhysRev.6.239
[4] S. J. Barnett, “Gyromagnetic and electron-inertia effects”, Reviews of Modern Physics, 7:2 (1935), 129-166 · doi:10.1103/RevModPhys.7.129
[5] Y. Bai, M. Svinin, M. Yamamoto, “Dynamics-based motion planning for a pendulum-actuated spherical rolling robot”, Regular and Chaotic Dynamics, 23:4 (2018), 372-388 · Zbl 1411.70021 · doi:10.1134/S1560354718040020
[6] R. Becker, G. Heller, F. Sauter, “Über die Stromverteilung in einer supraleitenden Kugel”, Zeitschrift für Physik, 85:11-12 (1933), 772-787 · JFM 59.1496.04 · doi:10.1007/BF01330324
[7] I. A. Bizayev, A. V. Tsiganov, “On the Routh sphere problem”, Journal of Physics A: Mathematical and Theoretical, 46:8 (2013), 085202 · Zbl 1311.70015 · doi:10.1088/1751-8113/46/8/085202
[8] I. A. Bizyaev, “The inertial motion of a roller racer”, Regular and Chaotic Dynamics, 22:3 (2017), 239-247 · Zbl 1381.37076 · doi:10.1134/S1560354717030042
[9] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “The Chaplygin sleigh with parametric excitation: chaotic dynamics and nonholonomic acceleration”, Regular and Chaotic Dynamics, 22:8 (2017), 955-975 · Zbl 1398.37056 · doi:10.1134/S1560354717080056
[10] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “An invariant measure and the probability of a fall in the problem of an inhomogeneous disk rolling on a plane”, Regular and Chaotic Dynamics, 23:6 (2018), 665-684 · Zbl 1410.37059 · doi:10.1134/S1560354718060035
[11] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Exotic dynamics of nonholonomic roller racer with periodic control”, Regular and Chaotic Dynamics, 23:7-8 (2018), 983-994 · Zbl 1412.37064 · doi:10.1134/S1560354718070122
[12] A. V. Borisov, I. S. Mamaev, A. V. Tsiganov, “Non-holonomic dynamics and Poisson geometry”, Russian Mathematical Surveys, 69:3 (2014), 481-538 · Zbl 1348.70038 · doi:10.1070/RM2014v069n03ABEH004899
[13] A. V. Borisov, I. S. Mamaev, Rigid body dynamics, De Gruyter Stud. Math. Phys., 52, De Gruyter, Berlin, 2018
[14] A. V. Borisov, S. P. Kuznetsov, “Comparing dynamics initiated by an attached oscillating particle for the nonholonomic model of a Chaplygin sleigh and for a model with strong transverse and weak longitudinal viscous friction applied at a fixed point on the body”, Regular and Chaotic Dynamics, 23:7-8 (2018), 803-820 · Zbl 1412.37065 · doi:10.1134/s1560354718070018
[15] A. V. Borisov, A. V. Tsiganov, “On the Chaplygin sphere in a magnetic field”, Regular and Chaotic Dynamics, 24:6 (2019), 739-754 · Zbl 1435.37093 · doi:10.1134/S156035471906011X
[16] A. A. Burov, G. I. Subkhankulov, “On the motion of a solid in a magnetic field”, Journal of Applied Mathematics and Mechanics, 50:6 (1986), 743-748 · Zbl 0631.70002 · doi:10.1016/0021-8928(86)90083-3
[17] S. A. Chaplygin, “On motion of heavy rigid body of revolution on horizontal plane”, Collection of works, v. 1, OGIZ, M.-L., 1948, 57-75
[18] R. Jaafar, E. M. Chudnovsky, D. A. Garanin, “Dynamics of the Einstein-de Haas effect: Application to a magnetic cantilever”, Physical Review B, 79:10 (2009), 104410 · doi:10.1103/physrevb.79.104410
[19] D. A. Garanin, E. M. Chudnovsky, “Angular momentum in spin-phonon processes”, Physical Review B, 92:2 (2015), 024421 · doi:10.1103/physrevb.92.024421
[20] R. Cushman, “Routh”s sphere”, Reports on Mathematical Physics, 42:1-2 (1998), 47-70 · Zbl 0965.70014 · doi:10.1016/S0034-4877(98)80004-9
[21] A. Einstein, “Experimenteller nachweis der ampèreschen molekularströme”, Naturwissenschaften, 3:19 (1915), 237-238 · doi:10.1007/BF01546392
[22] A. F. Hildebrandt, “Magnetic field of a rotating superconductor”, Physical Review Letters, 12:8 (1964), 190-191 · doi:10.1103/physrevlett.12.190
[23] J. E. Hirsch, “Moment of inertia of superconductors”, Physics Letters A, 383:1 (2019), 83-90 · Zbl 1404.82087 · doi:10.1016/j.physleta.2018.09.031
[24] S. Hu, M. Santoprete, “Suslov problem with the Clebsch-Tisserand potential”, Regular and Chaotic Dynamics, 23:2 (2018), 193-211 · Zbl 1434.70036 · doi:10.1134/S1560354718020053
[25] B. U. Felderhof, “Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid”, Physical Review E, 91:2 (2015), 023014 · doi:10.1103/physreve.91.023014
[26] G. Grioli, “Moto attorno al baricentro di un giroscopio soggetto a forze di potenza nulla”, Univ. Roma Ist. Naz. Alta Mat. Rend. Mat. e Appl. (5), 6 (1947), 439-463 · Zbl 0031.22402
[27] G. Grioli, “Sul moto di un corpo rigido asimmetrico soggetto a forze di potenza nulla”, Rendiconti del Seminario Matematico della Università di Padova, 27 (1957), 90-102 · Zbl 0078.37703
[28] H. Goldstein, “The classical motion of a rigid charged body in a magnetic field”, American Journal of Physics, 19:2 (1951), 100-109 · Zbl 0042.20306 · doi:10.1119/1.1932721
[29] J. H. Jellet, A treatise on the theory of friction, MacMillan, London, 1872 · JFM 04.0480.04
[30] I. K. Kikoin, S. W. Gubar, “Gyromagnetic effects in super conductors”, J. Phys. USSR, 3 (1940), 333-354
[31] A. A. Kilin, E. N. Pivovarova, “The rolling motion of a truncated ball without slipping and spinning on a plane”, Regular and Chaotic Dynamics, 22:3 (2017), 298-317 · Zbl 1410.70010 · doi:10.1134/S156035471703008X
[32] A. A. Kilin, E. N. Pivovarova, “Integrable nonsmooth nonholonomic dynamics of a rubber wheel with sharp edges”, Regular and Chaotic Dynamics, 23:7-8 (2018), 887-907 · Zbl 1429.70002 · doi:10.1134/S1560354718070067
[33] G. R. Kirchhoff, “Über die bewegung eines rotationskörpers in einer flüssigkeit”, Journal fÜr die Reine und Angewandte Mathematik (Crelles Journal), 1870:71 (1870), 237-262 · JFM 02.0731.01 · doi:10.1515/crll.1870.71.237
[34] A. I. Kobrin, Yu. G. Martynenko, “Motion of a conducting solid body near the center of mass in a slowly varying magnetic field”, Soviet Physics Doklady, 26:12 (1981), 1134-1136 · Zbl 0502.73096
[35] V. V. Kozlov, “Problem of the rotation of a solid body in a magnetic field”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 20:6 (1985), 28-33 (in Russian) · Zbl 0574.76027
[36] H. J. Kroh, B. U. Felderhof, “Force and torque on a sphere with electric dipole moment moving in a dielectric fluid in the presence of a uniform magnetic field”, Physica A: Statistical Mechanics and its Applications, 280:3-4 (2000), 256-265 · doi:10.1016/S0378-4371(00)00057-1
[37] S. P. Kuznetsov, “Regular and chaotic dynamics of a Chaplygin sleigh due to periodic switch of the nonholonomic constraint”, Regular and Chaotic Dynamics, 23:2 (2018), 178-192 · Zbl 1400.37076 · doi:10.1134/S1560354718020041
[38] M. Lakshmanan, “The fascinating world of the Landau-Lifshitz-Gilbert equation: an overview”, Philosophical Transactions of the Royal Society A: Mathematical. Physical and Engineering Sciences, 369:1939 (2011), 1280-1300 · Zbl 1219.82139 · doi:10.1098/rsta.2010.0319
[39] J. H. Mentink, M. I. Katsnelson, M. Lemeshko, “Quantum many-body dynamics of the Einstein-de Haas effect”, Physical Review B, 99:6 (2019), 064428 · doi:10.1103/physrevb.99.064428
[40] R. H. Pry, A. L. Lathrop, W. V. Houston, “Gyromagnetic effect in a superconductor”, Physical Review, 86:6 (1952), 905-907 · doi:10.1103/PhysRev.86.905
[41] H. A. Rowland, “Magnetic effect of electric convection”, American Journal of Science. Series 3, 15 (1878), 30-38 · doi:10.2475/ajs.s3-15.85.30
[42] O. W. Richardson, “A mechanical effect accompanying magnetization”, Physical Review, 26:3 (1908), 248-253 · doi:10.1103/PhysRevSeriesI.26.248
[43] E. J. Routh, Advanced rigid bodies dynamics, MacMillan and Co, London, 1884 · JFM 24.0812.10
[44] V. A. Samsonov, “On the rotation of a body in a magnetic field”, Izv. Akad. Nauk. Mekh. Tverd. Tela, 19:4 (1984), 32-34 (in Russian)
[45] A. V. Tsiganov, “Bäcklund transformations for the nonholonomic Veselova system”, Regular and Chaotic Dynamics, 22:2 (2017), 163-179 · Zbl 1375.37157 · doi:10.1134/S1560354717020058
[46] A. V. Tsiganov, “Integrable discretization and deformation of the nonholonomic Chaplygin ball”, Regular and Chaotic Dynamics, 22:4 (2017), 353-367 · Zbl 1383.37054 · doi:10.1134/S1560354717040025
[47] A. V. Tsiganov, “On exact discretization of cubic-quintic Duffing oscillator”, Journal of Mathematical Physics, 59:7 (2018), 072703 · Zbl 1396.37064 · doi:10.1063/1.5034381
[48] A. V. Tsiganov, “Discretization of Hamiltonian systems and intersection theory”, Theoretical and Mathematical Physics, 197:3 (2018), 1806-1822 · Zbl 1428.70032 · doi:10.1134/S0040577918120103
[49] A. V. Tsiganov, “Hamiltonization and separation of variables for a Chaplygin ball on a rotating plane”, Regular and Chaotic Dynamics, 24:2 (2019), 171-186 · Zbl 1433.37065 · doi:10.1134/S1560354719020035
[50] G. E. Uhlenbeck, S. Goudsmit, “Ersetzung der hypothese vom unmechanischen zwang durch eine forderung bezüglich des inneren verhaltens jedes einzelnen elektrons”, Naturwissenschaften, 13:47 (1925), 953-954 · JFM 51.0740.06 · doi:10.1007/BF01558878
[51] Yu. M. Urman, “Influence of the Barnett-London effect on the motion of a superconducting rotor in a nonuniform magnetic field”, Technical Physics, 43:8 (1998), 885-889 · doi:10.1134/1.1259095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.