×

On exact discretization of cubic-quintic Duffing oscillator. (English) Zbl 1396.37064

The author applies intersection theory to construct \(n\)-point finite-difference equations associated with classical integrable systems. As an example, a few exact discretizations of one-dimensional cubic and quintic Duffing oscillators sharing the form of the Hamiltonian and canonical Poisson bracket up to the integer scaling factor are presented.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37J05 Relations of dynamical systems with symplectic geometry and topology (MSC2010)
70K30 Nonlinear resonances for nonlinear problems in mechanics
70H05 Hamilton’s equations
39A12 Discrete version of topics in analysis
39A21 Oscillation theory for difference equations

References:

[1] Abel, N. H.; Tom, I., Mémoire sure une propriété générale d’une class très éntendue des fonctions transcendantes, Oeuvres Complétes, 145-211, (1881), Grondahl Son: Grondahl Son, Christiania
[2] Baker, H. F., Abel’s Theorem and the Allied Theory of Theta Functions, (1897), Cambridge University Press: Cambridge University Press, Cambridge · JFM 28.0331.01
[3] Bobenko, A. I.; Lorbeer, B.; Suris, Yu. B., Integrable discretizations of the Euler top, J. Math. Phys., 39, 6668-6683, (1998) · Zbl 0944.70009 · doi:10.1063/1.532648
[4] Deift, P.; Li, L.-C., Poisson geometry of the analog of the Miura maps and Bäcklund-Darboux transformations for equations of Toda type and periodic Toda flows, Commun. Math. Phys., 143, 201-214, (1991) · Zbl 0755.58050 · doi:10.1007/bf02100291
[5] Dubrovin, B. A., Theta functions and non-linear equations, Russ. Math. Surv., 36, 2, 11-92, (1981) · Zbl 0549.58038 · doi:10.1070/rm1981v036n02abeh002596
[6] Eisenbud, D.; Harris, J., 3264 and All that: A Second Course in Algebraic Geometry, (2016), Cambridge University Press · Zbl 1341.14001
[7] Elías-Zúñiga, A., Exact solution of the cubic-quintic Duffing oscillator, Appl. Math. Modell., 37, 2574-2579, (2013) · Zbl 1349.34001 · doi:10.1016/j.apm.2012.04.005
[8] Enolskii, V.; Pronine, M.; Richter, P., Double pendulum and θ-Divisor, J. Nonlinear Sci., 13, 157-174, (2003) · Zbl 1021.37039 · doi:10.1007/s00332-002-0514-0
[9] Fedorov, Yu. N., Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group SO(3), J. Nonlinear Math. Phys., 12, suppl. 2, 77-94, (2005) · Zbl 1126.37039 · doi:10.2991/jnmp.2005.12.s2.7
[10] Fulton, W., Intersection Theory, (1984), Springer: Springer, Berlin · Zbl 0541.14005
[11] Greenhill, A. G., The Applications of Elliptic Functions, (1892), Macmillan and Co: Macmillan and Co, London · JFM 24.0410.02
[12] Griffiths, P.; Laudal, O. A.; Piene, R., The legacy of Abel in algebraic geometry, The Legacy of Niels Henrik Abel, (2004), Springer: Springer, Berlin, Heidelberg · Zbl 1072.14001
[13] Cohen, H.; Frey, G., Handbook of Elliptic and Hyperelliptic Curve Cryptography, (2006), Chapman and Hall/CRC · Zbl 1082.94001
[14] Hietarinta, J.; Joshi, N.; Nijhoff, F. W., Discrete Systems and Integrability, (2016), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1362.37130
[15] Kleiman, S. L., The Picard scheme, Fundamental Algebraic Geometry, 235-321, (2005), American Mathematical Soc.: American Mathematical Soc., Providence, RI · Zbl 1085.14001
[16] Kuznetsov, V. B.; Vanhaecke, P., Bäcklund transformations for finite-dimensional integrable systems: A geometric approach, J. Geom. Phys., 44, 1, 1-40, (2002) · Zbl 1092.37032 · doi:10.1016/s0393-0440(02)00029-3
[17] Moser, J.; Veselov, A. P., Discrete versions of some classical integrable systems and factorization of matrix polynomials, Commun. Math. Phys., 139, 217-243, (1991) · Zbl 0754.58017 · doi:10.1007/bf02352494
[18] Murakami, C.; Murakami, W.; Hirose, K.; Ichikawa, Y. H., Global periodic structure of integrable Duffing’s maps, Chaos, Solitons Fractals, 16, 2, 233-244, (2003) · Zbl 1098.37053 · doi:10.1016/s0960-0779(02)00194-7
[19] Murakami, C.; Murakami, W.; Hirose, K.; Ichikawa, Y. H., Integrable Duffing’s maps and solutions of the Duffing equation, Chaos, Solitons Fractals, 15, 3, 425-443, (2003) · Zbl 1031.37047 · doi:10.1016/s0960-0779(02)00089-9
[20] Nayfeh, A. H.; Mook, D. T., Non-Linear Oscillations, (1973), John Wiley: John Wiley, New York
[21] Potts, R. B., Exact solution of a difference approximation to Duffing’s equation, J. Aust. Math. Soc. Ser. B Appl. Math., 23, 64-77, (1981) · Zbl 0475.34008 · doi:10.1017/s0334270000000060
[22] Potts, R. B., Best difference equation approximation to Duffing’s equation, J. Aust. Math. Soc. Ser. B Appl. Math., 23, 349-356, (1982) · Zbl 0479.65045 · doi:10.1017/s0334270000000308
[23] Ross, K. A.; Thompson, C. J., Iteration of some discretizations of the nonlinear Schrodinger equation, Phys. A, 135, 551-558, (1986) · Zbl 0664.65116 · doi:10.1016/0378-4371(86)90159-7
[24] Suris, Y. B., Integrable mappings of the standard type, Funct. Anal. Appl., 23, 1, 74-76, (1989) · Zbl 0689.58021 · doi:10.1007/bf01078586
[25] Suris, Y. B., The problem of integrable discretization: Hamiltonian approach, Progress in Mathematics, (2003), Birkhäuser: Birkhäuser, Basel · Zbl 1033.37030
[26] Tsiganov, A. V., On auto and hetero Bäcklund transformations for the Hénon-Heiles systems, Phys. Lett. A, 379, 2903-2907, (2015) · Zbl 1349.37072 · doi:10.1016/j.physleta.2015.08.023
[27] Tsiganov, A. V., On the Chaplygin system on the sphere with velocity dependent potential, J. Geom. Phys., 92, 94-99, (2015) · Zbl 1346.37052 · doi:10.1016/j.geomphys.2015.02.006
[28] Tsiganov, A. V., Simultaneous separation for the Neumann and Chaplygin systems, Regular Chaotic Dyn., 20, 74-93, (2015) · Zbl 1325.37052 · doi:10.1134/s1560354715010062
[29] Tsiganov, A. V., Bäcklund transformations for the Jacobi system on an ellipsoid, Theor. Math. Phys., 192, 3, 1350-1364, (2017) · Zbl 1386.37057 · doi:10.1134/s0040577917090069
[30] Tsiganov, A. V., Bäcklund transformations for the nonholonomic Veselova system, Regular Chaotic Dyn., 22, 2, 163-179, (2017) · Zbl 1375.37157 · doi:10.1134/s1560354717020058
[31] Tsiganov, A. V., Integrable discretization and deformation of the nonholonomic Chaplygin ball, Regular Chaotic Dyn., 22, 4, 353-367, (2017) · Zbl 1383.37054 · doi:10.1134/s1560354717040025
[32] Tsiganov, A. V., New bi-Hamiltonian systems on the plane, J. Math. Phys., 58, 062901, (2017) · Zbl 1456.37059 · doi:10.1063/1.4989534
[33] Tsiganov, A. V., Bäcklund transformations and divisor doubling, J. Geom. Phys., 126, 148-158, (2018) · Zbl 1385.37074 · doi:10.1016/j.geomphys.2018.01.017
[34] Veselov, A. P., Integrable systems with discrete time and difference operators, Funct. Anal. Appl., 22, 83-93, (1988) · Zbl 0694.58020 · doi:10.1007/bf01077598
[35] Veselov, A. P., Integrable maps, Russ. Math. Surv., 46, 1-51, (1991) · Zbl 0785.58027 · doi:10.1070/rm1991v046n05abeh002856
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.