×

Comparing dynamics initiated by an attached oscillating particle for the nonholonomic model of a Chaplygin sleigh and for a model with strong transverse and weak longitudinal viscous friction applied at a fixed point on the body. (English) Zbl 1412.37065

Summary: This paper addresses the problem of a rigid body moving on a plane (a platform) whose motion is initiated by oscillations of a point mass relative to the body in the presence of the viscous friction force applied at a fixed point of the platform and having in one direction a small (or even zero) value and a large value in the transverse direction. This problem is analogous to that of a Chaplygin sleigh when the nonholonomic constraint prohibiting motions of the fixed point on the platform across the direction prescribed on it is replaced by viscous friction. We present numerical results which confirm correspondence between the phenomenology of complex dynamics of the model with a nonholonomic constraint and a system with viscous friction – phase portraits of attractors, bifurcation diagram, and Lyapunov exponents. In particular, we show the possibility of the platform’s motion being accelerated by oscillations of the internal mass, although, in contrast to the nonholonomic model, the effect of acceleration tends to saturation. We also show the possibility of chaotic dynamics related to strange attractors of equations for generalized velocities, which is accompanied by a two-dimensional random walk of the platform in a laboratory reference system. The results obtained may be of interest to applications in the context of the problem of developing robotic mechanisms for motion in a fluid under the action of the motions of internal masses.

MSC:

37J60 Nonholonomic dynamical systems
70F25 Nonholonomic systems related to the dynamics of a system of particles
70E50 Stability problems in rigid body dynamics
Full Text: DOI

References:

[1] Yuh, J., Design and Control of Autonomous Underwater Robots: A Survey, Auton. Robots, 2000, vol. 8, no. 1, pp. 7-24. · doi:10.1023/A:1008984701078
[2] Whitcomb, L.; Yoerger, D. R.; Singh, H.; Howland, J.; Hollerbach, J. M. (ed.); Koditschek, D. E. (ed.), Advances in Underwater Robot Vehicles for Deep Ocean Exploration: Navigation, Control, and Survey Operations, 439-448 (2000), London · doi:10.1007/978-1-4471-0765-1_53
[3] Karavaev, Yu. L., Kilin, A.A., and Klekovkin, A. V., Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7-8, pp. 918-926. · Zbl 1369.70013 · doi:10.1134/S1560354716070133
[4] Andersen, A., Pesavento, U., and Wang, Z. J., Analysis of Transitions between Fluttering, Tumbling and Steady Descent of Falling Cards, J. Fluid Mech., 2005, vol. 541, pp. 91-104. · Zbl 1082.76038 · doi:10.1017/S0022112005005847
[5] Pesavento, U. and Wang, Z. J., Falling Paper: Navier-Stokes Solutions, Model of Fluid Forces, and Center of Mass Elevation, Phys. Rev. Lett., 2004, vol. 93, no. 14, 144501, 4 pp. · doi:10.1103/PhysRevLett.93.144501
[6] Tanabe, Y. and Kaneko, K., Tanabe and Kaneko Reply, Phys. Rev. Lett., 1995, vol. 75, no. 7, p. 1421. · doi:10.1103/PhysRevLett.75.1421
[7] Kozlov, V.V., On the Problem of Fall of a Rigid Body in a Resisting Medium, Mosc. Univ. Mech. Bull., 1990, vol. 45, no. 1, pp. 30-36; see also: Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 1990, no. 1, pp. 79-86. · Zbl 0712.76044
[8] Kuznetsov, S.P., Plate Falling in a Fluid: Regular and Chaotic Dynamics of Finite-Dimensional Models, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 345-382. · Zbl 1327.34089 · doi:10.1134/S1560354715030090
[9] Borisov, A. V., Kuznetsov, S.P., Mamaev, I. S., and Tenenev, V.A., Describing the Motion of a Body with an Elliptical Cross Section in a Viscous Uncompressible Fluid by Model Equations Reconstructed from Data Processing, Tech. Phys. Lett., 2016, vol. 42, no. 9, pp. 886-890; see also: Pis’ma Zh. Tekh. Fiz., 2016, vol. 42, no. 17, pp. 9-19. · doi:10.1134/S1063785016090042
[10] Chaplygin, S.A., On the Theory ofMotion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369-376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303-314. · Zbl 1229.37082 · doi:10.1134/S1560354708040102
[11] Carathéodory, C., Der Schlitten, Z. Angew. Math. Mech., 1933, vol. 13, no. 2, pp. 71-76. · Zbl 0006.37301 · doi:10.1002/zamm.19330130205
[12] Borisov, A.V. and Mamaev, I. S., The Dynamics of a Chaplygin Sleigh, J. Appl. Math. Mech., 2009, vol. 73, no. 2, pp. 156-161; see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 2, pp. 219-225. · Zbl 1183.74080 · doi:10.1016/j.jappmathmech.2009.04.005
[13] Borisov, A. V. and Kuznetsov, S.P., Regular and Chaotic Motions of Chaplygin Sleigh under Periodic Pulsed Torque Impacts, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7-8, pp. 792-803. · Zbl 1368.37075 · doi:10.1134/S1560354716070029
[14] Kuznetsov, S.P., Regular and Chaotic Motions of the Chaplygin Sleigh with Periodically Switched Location of Nonholonomic Constraint, Europhys. Lett., 2017, vol. 118, no. 1, 10007, 10 pp. · doi:10.1209/0295-5075/118/10007
[15] Kuznetsov, S.P., Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint, Regul. Chaotic Dyn., 2018, vol. 23, no. 2, pp. 178-192. · Zbl 1400.37076 · doi:10.1134/S1560354718020041
[16] Bizyaev, I. A., Borisov, A.V., and Kuznetsov, S.P., Chaplygin Sleigh with Periodically Oscillating Internal Mass, Europhys. Lett., 2017, vol. 119, no. 6, 60008, 7 pp. · doi:10.1209/0295-5075/119/60008
[17] Bizyaev, I.A., Borisov, A.V., and Mamaev, I. S., The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration, Regul. Chaotic Dyn., 2017, vol. 22, no. 8, pp. 957-977. · Zbl 1398.37056 · doi:10.1134/S1560354717080056
[18] Bizyaev, I. A.; Borisov, A. V.; Kuznetsov, S. P., The Chaplygin Sleigh with Friction Moving due to Periodic Oscillations of an Internal Mass, 16 (2018)
[19] Tallapragada, Ph. and Fedonyuk, V., Steering a Chaplygin Sleigh Using Periodic Impulses, J. Comput. Nonlinear Dynam., 2017, vol. 12, no. 5, 054501, 5 pp. · doi:10.1115/1.4036117
[20] Fedonyuk, V. and Tallapragada, Ph., Stick-Slip Motion of the Chaplygin Sleigh with Piecewise-Smooth Nonholonomic Constraint, ASME J. Comput. Nonlin. Dyn., 2017, vol. 12, no. 3, 031021, 8 pp. · doi:10.1115/1.4035407
[21] Fedonyuk, V. and Tallapragada, Ph., Sinusoidal Control and Limit Cycle Analysis of the Dissipative Chaplygin Sleigh, Nonlinear Dyn., 2018, vol. 93, no. 2, pp. 835-846. · Zbl 1398.34045 · doi:10.1007/s11071-018-4230-1
[22] Fermi, E., On the Origin of the Cosmic Radiation, Phys. Rev., 1949, vol. 75, no. 8, pp. 1169-1174. · Zbl 0032.09604 · doi:10.1103/PhysRev.75.1169
[23] Zaslavsky, G. M. and Chirikov, B. V., Fermi Acceleration Mechanism in the One-Dimensional Case, Dokl. Akad. Nauk SSSR, 1964, vol. 159, no. 2, pp. 306-309 (Russian).
[24] Zaslavskii, G. M. and Chirikov, B. V., Stochastic Instability of Non-Linear Oscillations, Sov. Phys. Usp., 1972, vol. 14, no. 5, pp. 549-568; see also: Uspekhi Fiz. Nauk, 1971, vol. 105, no. 9, pp. 3-39. · Zbl 1156.34335 · doi:10.1070/PU1972v014n05ABEH004669
[25] Zaslavsky, G. M., Statistical Irreversibility in Nonlinear Systems, Moscow: Nauka, 1970 (Russian).
[26] Handbook of Chaos Control, E. Schöll, H.G. Schuster (Eds.), 2nd ed., Weinheim: Wiley-VCH, 2008. · Zbl 1130.93001
[27] Karapetyan, A.V., On Realizing Nonholonomic Constraints by Viscous Friction Forces and Celtic Stones Stability, J. Appl. Math. Mech., 1981, vol. 45, no. 1, pp. 30-36; see also: Prikl. Mat. Mekh., 1981, vol. 45, no. 1, pp. 42-51. · Zbl 0493.70008 · doi:10.1016/0021-8928(81)90006-X
[28] Kozlov, V. V., On the Realization of Constraints in Dynamics, J. Appl. Math. Mech., 1992, vol. 56, no. 4, pp. 594-600; see also: Prikl. Mat. Mekh., 1992, vol. 56, no. 4, pp. 692-698. · Zbl 0788.70007 · doi:10.1016/0021-8928(92)90017-3
[29] Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., vol. 33, Providence,R.I.: AMS, 2004. · Zbl 0171.45502 · doi:10.1090/mmono/033
[30] Fufaev, N.A., On the Possibility of Realizing a Nonholonomic Constraint by Means of Viscous Friction Forces, J. Appl. Math. Mech., 1964, vol. 28, no. 3, pp. 630-632; see also: Prikl. Mat. Mekh., 1964, vol. 28, no. 3, pp. 513-515. · Zbl 0151.35801 · doi:10.1016/0021-8928(64)90105-4
[31] Lamb, H., Hydrodynamics, 6th ed., Cambridge: Cambridge Univ. Press, 1993. · Zbl 0828.01012
[32] Ruelle, D., Strange Attractors, Math. Intelligencer, 1980, vol. 2, no. 3, pp. 126-137. · Zbl 0487.58014 · doi:10.1007/BF03023053
[33] Schuster, H.G. and Just, W., Deterministic Chaos: An Introduction, Weinheim: Wiley-VCH, 2005. · Zbl 1094.37001 · doi:10.1002/3527604804
[34] Kuznetsov, S.P., Dynamical Chaos, 2nd ed., Moscow: Fizmatlit, 2006 (Russian).
[35] Sagdeev, R. Z., Usikov, D.A., and Zaslavsky, G.M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Chur: Harwood, 1990.
[36] Lichtenberg, A. J. and Lieberman, M.A., Regular and Chaotic Dynamics, 2nd ed., Appl. Math. Sci., vol. 38, New York: Springer, 1992. · Zbl 0748.70001
[37] Reichl, L.E., The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations, 2nd ed., New York: Springer, 2004. · Zbl 1061.70001 · doi:10.1007/978-1-4757-4350-0
[38] Feller, W., An Introduction to Probability Theory and Its Applications: Vol. 1, 3rd ed., New York: Wiley, 1968. · Zbl 0155.23101
[39] Rytov, S.M., Kravtsov, Yu.A., and Tatarskii, V. I., Principles of Statistical Radiophysics: 1. Elements of Random Process Theory, Berlin: Springer, 1987. · Zbl 0668.60001 · doi:10.1007/978-3-642-69201-7
[40] Cox, D. R. and Miller, H. D., The Theory of Stochastic Processes, London: Methuen, 1970.
[41] Rabinovich, M. I. and Trubetskov, D. I., Oscillations and Waves in Linear and Nonlinear Systems, Dordrecht: Kluver, 1989. · Zbl 0712.70001 · doi:10.1007/978-94-009-1033-1
[42] Damgov, V., Nonlinear and Parametric Phenomena: Theory and Applications in Radiophysical and Mechanical Systems, Singapore: World Sci., 2004. · Zbl 0952.70001 · doi:10.1142/3399
[43] Champneys, A., Dynamics of Parametric Excitation, 183-204 (2012), New York · doi:10.1007/978-1-4614-1806-1_13
[44] Borisov, A.V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics-Uspekhi, 2003, vol. 46, no. 4, pp. 393-403; see also: Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 407-418.
[45] Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512-532. · Zbl 1263.74021 · doi:10.1134/S1560354712060044
[46] Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, Physics-Uspekhi, 2014, vol. 57, no. 5, pp. 453-460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493-500.
[47] Kaplan, J. L. and Yorke, J.A., A Chaotic Behavior of Multi-Dimensional Differential Equations, in Functional Differential Equations and Approximations of Fixed Points, H.-O. Peitgen, H.-O. Walther (Eds.), Lecture Notes in Math., vol. 730, Berlin: Springer, 1979, pp. 204-227. · Zbl 0448.58020 · doi:10.1007/BFb0064319
[48] Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M., Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems: A Method for Computing All of Them: P. 1: Theory, Meccanica, 1980, vol. 15, no. 1, pp. 9-20. · Zbl 0488.70015 · doi:10.1007/BF02128236
[49] Vasil’eva, A.B. and Butusov, V. F., Asymptotic Methods in Singular Perturbation Theory, Moscow: Vysshaja Shkola, 1990 (Russian). · Zbl 0747.34033
[50] Riznichenko, G.Yu., Lectures on Mathematical Models in Biology, Izhevsk: R&C Dynamics, Institute of Computer Science, 2011 (Russian).
[51] Cole, J.D., Perturbation Methods in Applied Mathematics, Waltham,Mass.: Blaisdell, 1968. · Zbl 0162.12602
[52] Brendelev, V. N., On the Realization of Constraints in Nonholonomic Mechanics, J. Appl. Math. Mech., 1981, vol. 45, no. 3, pp. 351-355; see also: Prikl. Mat. Mekh., 1981, vol. 45, no. 3, pp. 481-487. · Zbl 0496.70026 · doi:10.1016/0021-8928(81)90065-4
[53] Kozlov, V.V., Realization of Nonintegrable Constraints in Classical Mechanics, Sov. Phys. Dokl., 1983, vol. 28, pp. 735-737; see also: Dokl. Akad. Nauk SSSR, 1983, vol. 272, no. 3, pp. 550-554. · Zbl 0579.70014
[54] Eldering, J., Realizing Nonholonomic Dynamics As Limit of Friction Forces, Regul. Chaotic Dyn., 2016, vol. 21, no. 4, pp. 390-409. · Zbl 1404.37074 · doi:10.1134/S156035471604002X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.