Skip to main content
Log in

Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The main goal of the article is to suggest a two-dimensional map that could play the role of a generalized model similar to the standard Chirikov–Taylor mapping, but appropriate for energy-conserving nonholonomic dynamics. In this connection, we consider a Chaplygin sleigh on a plane, supposing that the nonholonomic constraint switches periodically in such a way that it is located alternately at each of three legs supporting the sleigh. We assume that at the initiation of the constraint the respective element (“knife edge”) is directed along the local velocity vector and becomes instantly fixed relative to the sleigh till the next switch. Differential equations of the mathematical model are formulated and an analytical derivation of mapping for the state evolution on the switching period is provided. The dynamics take place with conservation of the mechanical energy, which plays the role of one of the parameters responsible for the type of the dynamic behavior. At the same time, the Liouville theorem does not hold, and the phase volume can undergo compression or expansion in certain state space domains. Numerical simulations reveal phenomena characteristic of nonholonomic systems with complex dynamics (like the rattleback or the Chaplygin top). In particular, on the energy surface attractors associated with regular sustained motions can occur, settling in domains of prevalent phase volume compression together with repellers in domains of the phase volume expansion. In addition, chaotic and quasi-periodic regimes take place similar to those observed in conservative nonlinear dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schuster, H.G. and Just, W., Deterministic Chaos: An Introduction, Weinheim: Wiley-VCH, 2005.

    Book  MATH  Google Scholar 

  2. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol. 42, New York: Springer, 2013.

    MATH  Google Scholar 

  3. Kuznetsov, S.P., Dynamical Chaos, 2nd ed., Moscow: Fizmatlit, 2006 (Russian).

    Google Scholar 

  4. Sagdeev, R. Z., Usikov, D.A., and Zaslavsky, G.M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Chur: Harwood Acad. Publ., 1990.

    Google Scholar 

  5. Lichtenberg, A. J. and Lieberman, M.A., Regular and Chaotic Dynamics, 2nd ed. Appl. Math. Sci., vol. 38, New York: Springer, 1992.

    Book  MATH  Google Scholar 

  6. Reichl, L.E., The Transition to Chaos in Conservative Classical Systems: Quantum Manifestations, New York: Springer, 2004.

    Book  MATH  Google Scholar 

  7. Neimark, Ju. I. and Fufaev, N.A., Dynamics of Nonholonomic Systems, Transl. Math. Monogr., vol. 33, Providence,R.I.: AMS, 2004.

    Book  MATH  Google Scholar 

  8. Bloch, A.M., Nonholonomic Mechanics and Control, 2nd ed., Interdiscip. Appl. Math., vol. 24, New York: Springer, 2015.

    Book  Google Scholar 

  9. Borisov, A. V. and Mamaev, I. S., The Rolling Motion of a Rigid Body on a Plane and a Sphere: Hierarchy of Dynamics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 177–200.

    Article  MathSciNet  MATH  Google Scholar 

  10. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Hierarchy of Dynamics of a Rigid Body Rolling without Slipping and Spinning on a Plane and a Sphere, Regul. Chaotic Dyn., 2013, vol. 18, no. 3, pp. 277–328.

    Article  MathSciNet  MATH  Google Scholar 

  11. Borisov, A. V. and Mamaev, I. S., Symmetries and Reduction in NonholonomicMechanics, Regul. Chaotic Dyn., 2015, vol. 20, no. 5, pp. 553–604.

    Article  MathSciNet  MATH  Google Scholar 

  12. Caughey, T. K., A Mathematical Model of the “Rattleback”, Internat. J. Non-Linear Mech., 1980, vol. 15, nos. 4–5, pp. 293–302.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kozlov, V.V., On the Theory of Integration of the Equations of NonholonomicMechanics, Regul. Chaotic Dyn., 2002, vol. 7, no. 2, pp. 191–176.

    Article  Google Scholar 

  14. Karapetyan, A.V., Hopf Bifurcation in a Problem of Rigid Body Moving on a Rough Plane, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, 1985, no. 2, pp. 19–24 (Russian).

    Google Scholar 

  15. Borisov, A.V. and Mamaev, I. S., Strange Attractors in Rattleback Dynamics, Physics–Uspekhi, 2003, vol. 46, no. 4, pp. 393–403; see also: Uspekhi Fiz. Nauk, 2003, vol. 173, no. 4, pp. 407–418.

    Google Scholar 

  16. Borisov, A.V., Kazakov, A.O., and Kuznetsov, S.P., Nonlinear Dynamics of the Rattleback: A Nonholonomic Model, Physics–Uspekhi, 2014, vol. 57, no. 5, pp. 453–460; see also: Uspekhi Fiz. Nauk, 2014, vol. 184, no. 5, pp. 493–500.

    Google Scholar 

  17. Borisov, A.V., Jalnine, A.Yu., Kuznetsov, S.P., Sataev, I.R., and Sedova, J.V., Dynamical Phenomena Occurring due to Phase Volume Compression in Nonholonomic Model of the Rattleback, Regul. Chaotic Dyn., 2012, vol. 17, no. 6, pp. 512–532.

    Article  MathSciNet  MATH  Google Scholar 

  18. Borisov, A.V., Kazakov, A.O., and Pivovarova, E.N., Regular and Chaotic Dynamics in the Rubber Model of a Chaplygin Top, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 885–901.

    Article  MathSciNet  MATH  Google Scholar 

  19. Borisov, A.V., Kazakov, A.O., and Sataev, I.R., Spiral Chaos in the NonholonomicModel of a Chaplygin Top, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 939–954.

    Article  MathSciNet  MATH  Google Scholar 

  20. Gonchenko, A. S., Gonchenko, S.V., and Kazakov, A.O., Richness of Chaotic Dynamics in Nonholonomic Models of a Celtic Stone, Regul. Chaotic Dyn., 2013, vol. 18, no. 5, pp. 521–538.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuznetsov, S.P., On the Validity of the Nonholonomic Model of the Rattleback, Physics–Uspekhi, 2015, vol. 58, no. 12, pp. 1223–1224; see also: Uspekhi Fiz. Nauk, 2015, vol. 185, no. 12, pp. 1342–1344.

    Google Scholar 

  22. Roberts, J.A.G. and Quispel, G.R.W., Chaos and Time-Reversal Symmetry: Order and Chaos in Reversible Dynamical Systems, Phys. Rep., 1992, vol. 216, nos. 2–3, pp. 63–177.

    Article  MathSciNet  Google Scholar 

  23. Lamb, J. S.W. and Roberts, J.A.G., Time-Reversal Symmetry in Dynamical Systems: A Survey, Phys. D, 1998, vol. 112, nos. 1–2, pp. 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  24. Politi, A., Oppo, G. L., and Badii, R., Coexistence of Conservative and Dissipative Behavior in Reversible Dynamical Systems, Phys. Rev. A, 1986, vol. 33, no. 6, pp. 4055–4060.

    Article  Google Scholar 

  25. Lamb, J. S.W., Melbourne, I., and Wulff, C., Bifurcation from Periodic Solutions with Spatiotemporal Symmetry, including Resonances and Mode Interactions, J. Differential Equations, 2003, vol. 191, no. 2, pp. 377–407.

    Article  MathSciNet  MATH  Google Scholar 

  26. Pikovsky, A. and Topaj, D., Reversibility vs. Synchronization in Oscillator Latties, Phys. D, 2002, vol. 170, pp. 118–130.

    Article  MathSciNet  MATH  Google Scholar 

  27. Sprott, J. C. and Hoover, W. G., Harmonic Oscillators with Nonlinear Damping, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2017, vol. 27, no. 11, 1730037, 19 pp.

    Article  MathSciNet  MATH  Google Scholar 

  28. Chaplygin, S.A., On the Theory of Motion of Nonholonomic Systems. The Reducing-Multiplier Theorem, Regul. Chaotic Dyn., 2008, vol. 13, no. 4, pp. 369–376; see also: Mat. Sb., 1912, vol. 28, no. 2, pp. 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  29. Carathéodory, C., Der Schlitten, Z. Angew. Math. Mech., 1933, vol. 13, no. 2, pp. 71–76.

    Article  Google Scholar 

  30. Borisov, A.V. and Mamaev, I. S., The Dynamics of a Chaplygin Sleigh, J. Appl. Math. Mech., 2009, vol. 73, no. 2, pp. 156–161; see also: Prikl. Mat. Mekh., 2009, vol. 73, no. 2, pp. 219–225.

    Article  MathSciNet  Google Scholar 

  31. Jung, P., Marchegiani, G., and Marchesoni, F., Nonholonomic Diffusion of a Stochastic Sled, Phys. Rev. E, 2016, vol. 93, no. 1, 012606, 9 pp.

    Article  Google Scholar 

  32. Borisov, A. V. and Kuznetsov, S.P., Regular and Chaotic Motions of Chaplygin Sleigh under Periodic Pulsed Torque Impacts, Regul. Chaotic Dyn., 2016, vol. 21, nos. 7–8, pp. 792–803.

    Article  MathSciNet  MATH  Google Scholar 

  33. Tallapragada, P. and Fedonyuk, V., Steering a Chaplygin Sleigh Using Periodic Impulses, J. Comput. Nonlinear Dynam., 2017, vol. 12, no. 5, 054501, 5 pp.

    Article  Google Scholar 

  34. Kuznetsov, S.P., Regular and Chaotic Motions of the Chaplygin Sleigh with Periodically Switched Location of Nonholonomic Constraint, Europhys. Lett., 2017, vol. 118, no. 1, 10007, 7 pp.

    Article  MathSciNet  Google Scholar 

  35. Pikovsky, A. and Politi, A., Lyapunov Exponents: A Tool to Explore Complex Dynamics, Cambridge: Cambridge Univ. Press, 2016.

    Book  MATH  Google Scholar 

  36. Ott, E., Grebogi, C., and Yorke, J.A., Controlling Chaos, Phys. Rev. Lett., 1990, vol. 64, no. 11, pp. 1196–1199.

    Article  MathSciNet  MATH  Google Scholar 

  37. Pyragas, K., Continious Control of Chaos by Self-Controlling Feedback, Phys. Lett. A, 1992, vol. 170, no. 6, pp. 421–428.

    Article  Google Scholar 

  38. Handbook of Chaos Control, E. Schöll, H.G. Schuster (Eds.), Weinheim: Wiley, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey P. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, S.P. Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint. Regul. Chaot. Dyn. 23, 178–192 (2018). https://doi.org/10.1134/S1560354718020041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718020041

Keywords

Keywords

Navigation