×

Growth in the Muskat problem. (English) Zbl 1473.35442

Summary: We review some recent results on the Muskat problem modelling multiphase flow in porous media. Furthermore, we prove a new regularity criteria in terms of some norms of the initial data in critical spaces (\(\dot{W}^{1,\infty}\) and \(\dot{H}^{3/2}\)).

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q86 PDEs in connection with geophysics
76S05 Flows in porous media; filtration; seepage
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35D30 Weak solutions to PDEs
35D35 Strong solutions to PDEs

References:

[1] D. Ambrose, The zero surface tension limit of two-dimensional interfacial Darcy flow. J. Math. Fluid Mech. 16 (2014) 105-143. · Zbl 1308.76260 · doi:10.1007/s00021-013-0146-1
[2] D.M. Ambrose, Well-posedness of two-phase Hele-Shaw flow without surface tension. Eur. J. Appl. Math. 15 (2004) 597-607. · Zbl 1076.76027
[3] C.-H. Arthur Cheng, R. Granero-Belinchón and S. Shkoller, Well-posedness of the Muskat problem with H^2 initial data. Adv. Math. 286 (2016) 32-104. · Zbl 1331.35396 · doi:10.1016/j.aim.2015.08.026
[4] C.-H. Arthur Cheng, R. Granero-Belinchón, S. Shkoller and J. Wilkening, Rigorous asymptotic models of water waves. Water Waves (2019) 1-60. · Zbl 1451.76022
[5] H. Bae and R. Granero-Belinchón, Global existence for some transport equations with nonlocal velocity. Adv. Math. 269 (2015) 197-219. · Zbl 1326.35076 · doi:10.1016/j.aim.2014.10.016
[6] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations. In Vol. 343. Springer Science & Business Media, Switzerland (2011). · Zbl 1227.35004 · doi:10.1007/978-3-642-16830-7
[7] J. Bear, Dynamics of Fluids in Porous Media. Dover Publications, USA (1988). · Zbl 1191.76002
[8] L.C Berselli, Vanishing viscosity limit and long-time behavior for 2d quasi-geostrophic equations. Indiana U. Math. J. 51 (2002) 905-930. · Zbl 1044.35055 · doi:10.1512/iumj.2002.51.2075
[9] L.C. Berselli, D. Córdoba and R. Granero-Belinchón, Local solvability and turning for the inhomogeneous Muskat problem. Interfaces Free Bound. 16 (2014) 175-213. · Zbl 1295.35385 · doi:10.4171/IFB/317
[10] O.V. Besov, Investigation of a class of function spaces in connection with imbedding and extension theorems. Trudy Matematicheskogo Instituta imeni VA Steklova 60 (1961) 42-81. · Zbl 0116.31701
[11] S.E. Buckley and M.C. Leverett, Mechanism of fluid displacement in sands. Trans. Aime 146 (1941) 107-116. · doi:10.2118/942107-G
[12] S. Cameron, Global well-posedness for the 2d Muskat problem with slope less than 1. Anal. PDE 12 (2019) 997-1022. · Zbl 1403.35127 · doi:10.2140/apde.2019.12.997
[13] A. Castro, D. Cordoba, C. Fefferman, F. Gancedo and M. Lopez-Fernandez, Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. 175 (2012) 909-948. · Zbl 1267.76033
[14] A. Castro, D. Cordoba, C. Fefferman and F. Gancedo, Breakdown of smoothness for the Muskat problem. Arch. Ration. Mech. Anal. 208 (2013) 805-909. · Zbl 1293.35234
[15] A. Castro, D. Córdoba and D. Faraco, Mixing solutions for the Muskat problem. Preprint arXiv:1605.04822 (2016).
[16] A. Castro, D. Córdoba, C. Fefferman and F. Gancedo, Splash singularities for the one-phase Muskat problem in stable regimes. Arch. Ration. Mech. Anal. 222 (2016) 213-243. · Zbl 1350.35151
[17] Á. Castro, D. Faraco and F. Mengual, Degraded mixing solutions for the Muskat problem. Preprint arXiv:1805.12050 (2018). · Zbl 1412.35246
[18] M. Cerminara and A. Fasano, Modelling the dynamics of a geothermal reservoir fed by gravity driven flow through overstanding saturated rocks. J. Volcanol. Geotherm. Res. 233 (2012) 37-54. · doi:10.1016/j.jvolgeores.2012.03.005
[19] D. Chae, P. Constantin, D. Córdoba, F. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65 (2012) 1037-1066. · Zbl 1244.35108
[20] H.A. Chang-Lara and N. Guillen, From the free boundary condition for hele-shaw to a fractional parabolic equation. Preprint arXiv:1605.07591 (2016).
[21] X. Chen, The hele-shaw problem and area-preserving curve-shortening motions. Arch. Ration. Mech. Anal. 123 (1993) 117-151. · Zbl 0780.35117
[22] P. Constantin and M. Pugh, Global solutions for small data to the Hele-Shaw problem. Nonlinearity 6 (1993) 393-415. · Zbl 0808.35104
[23] P. Constantin, A.J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7 (1994) 1495. · Zbl 0809.35057
[24] P. Constantin, A.J. Majda and E.G. Tabak, Singular front formation in a model for quasi-geostrophic flow. Phys. Fluids 6 (1994) 9. · Zbl 0826.76014 · doi:10.1063/1.868050
[25] P. Constantin, D. Cordoba, F. Gancedo and R.M. Strain. On the global existence for the Muskat problem. J. Eur. Math. Soc. 15 (2013) 201-227. · Zbl 1258.35002 · doi:10.4171/JEMS/360
[26] P. Constantin, D. Cordoba, F. Gancedo, L. Rodríguez-Piazza and R.M. Strain, On the Muskat problem: global in time results in2d and 3d. Am. J. Math. 138 (2016) 6. · Zbl 1369.35053 · doi:10.1353/ajm.2016.0044
[27] P. Constantin, F. Gancedo, R. Shvydkoy and V. Vicol, Global regularity for 2d Muskat equations with finite slope. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. 34 (2016) 1041-1074. · Zbl 1365.76304 · doi:10.1016/j.anihpc.2016.09.001
[28] A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249 (2004) 511-528. · Zbl 1309.76026 · doi:10.1007/s00220-004-1055-1
[29] D. Córdoba and F. Gancedo, Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Commun. Math. Phys. 273 (2007) 445-471. · Zbl 1120.76064 · doi:10.1007/s00220-007-0246-y
[30] D. Córdoba and F. Gancedo, A maximum principle for the Muskat problem for fluids with different densities. Commun. Math. Phys. 286 (2009) 681-696. · Zbl 1173.35637 · doi:10.1007/s00220-008-0587-1
[31] D. Córdoba and F. Gancedo, Absence of squirt singularities for the multi-phase Muskat problem. Commun. Math. Phys. 299 (2010) 561-575. · Zbl 1198.35176 · doi:10.1007/s00220-010-1084-x
[32] D. Cordoba and T. Pernas-Castaño, Non-splat singularity for the one-phase Muskat problem. Trans. Am. Math. Soc. 369 (2017) 711-754. · Zbl 1351.35130
[33] D. Cordoba and O. Lazar, Global well-posedness for the 2d stable Muskat problem in H^3∕2. Preprint arXiv:1803.07528 (2018).
[34] A. Cordoba, D. Cordoba and F. Gancedo, The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces. Proc. Natl. Acad. Sci. 106 (2009) 10955-10959. · Zbl 1203.76059 · doi:10.1073/pnas.0809874106
[35] A. Cordoba, D. Córdoba and F. Gancedo, Interface evolution: the Hele-Shaw and Muskat problems. Ann. Math. 173 (2011) 477-542. · Zbl 1229.35204
[36] A. Córdoba, D. Córdoba and F. Gancedo, Porous media: the Muskat problem in three dimensions. Anal. PDE 6 (2013) 447-497. · Zbl 1273.35221 · doi:10.2140/apde.2013.6.447
[37] D. Córdoba, R. Granero-Belinchón and R. Orive, On the confined Muskat problem: differences with the deep water regime. Commun. Math. Sci. 12 (2014) 423-455. · Zbl 1301.35102
[38] D. Córdoba, J. Gómez-Serrano and A. Zlatoš, A note on stability shifting for the Muskat problem. Phil. Trans. R. Soc. A 373 (2015) 20140278. · Zbl 1353.76084 · doi:10.1098/rsta.2014.0278
[39] D. Córdoba, J. Gómez-Serrano and A. Zlatoš, A note on stability shifting for the Muskat problem ii: from stable to unstable and back to stable. Anal. PDE 10 (2017) 367-378. · Zbl 1360.35171 · doi:10.2140/apde.2017.10.367
[40] D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20 (2006) 829-930. · Zbl 1123.35038 · doi:10.1090/S0894-0347-07-00556-5
[41] D. Coutand and S. Shkoller, On the impossibility of finite-time splash singularities for vortex sheets. Arch. Ration. Mech. Anal. 221 (2016) 987-1033. · Zbl 1338.35343
[42] H. Darcy, Les fontaines publiques de la ville de Dijon: exposition et application. Victor Dalmont, Paris (1856).
[43] L. Dawson, H. McGahagan and G. Ponce, On the decay properties of solutions to a class of Schrödinger equations. Proc. Am. Math. Soc. 136 (2008) 2081-2090. · Zbl 1185.35252
[44] C.M. Elliott and J.R. Ockendon, Vol. 59 of Weak and Variational Methods for Moving Boundary Problems. Pitman Publishing, London (1982). · Zbl 0476.35080
[45] J. Escherand B.-V. Matioc, On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results. Z. Anal. Anwend. 30 (2011) 193-218. · Zbl 1223.35199
[46] J. Escher and G. Simonett, Classical solutions for Hele-Shaw models with surface tension. Adv. Differ. Equ. 2 (1997) 619-642. · Zbl 1023.35527
[47] J. Escherand G. Simonett, A center manifold analysis for the Mullins-Sekerka model. J. Differ. Equ. 143 (1998) 267-292. · Zbl 0896.35142
[48] J. Escher, A.-V. Matioc and B.-V. Matioc, A generalized Rayleigh-Taylor condition for the Muskat problem. Nonlinearity 25 (2012) 73-92. · Zbl 1243.35179
[49] J. Escher, B.-V. Matioc and C. Walker, The domain of parabolicity for the Muskat problem. Indiana Univ. Math. J. 67 (2018) 679-737. · Zbl 1402.35318 · doi:10.1512/iumj.2018.67.7263
[50] C. Fefferman, A.D. Ionescu, V. Lie, On the absence of splash singularities in the case of two-fluid interfaces. Duke Math. J. 165 (2016) 417-462. · Zbl 1346.35152 · doi:10.1215/00127094-3166629
[51] C. Förster and L. Székelyhidi Jr. Piecewise constant subsolutions for the Muskat problem. Commun. Math. Phys. 363 (2018) 1051-1080. · Zbl 1446.76159 · doi:10.1007/s00220-018-3245-2
[52] S. Friedlander and V. Vicol, Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. 28 (2011) 283-301. · Zbl 1277.35291 · doi:10.1016/j.anihpc.2011.01.002
[53] S. Friedlander and V. Vicol, On the ill/well-posedness and nonlinear instability of the magneto-geostrophic equations. Nonlinearity 24 (2011) 3019. · Zbl 1228.76036
[54] S. Friedlander, W. Rusin and V. Vicol, On the supercritically diffusive magnetogeostrophic equations. Nonlinearity 25 (2012) 3071. · Zbl 1252.76022
[55] S. Friedlander, W. Rusin, V. Vicol and A.I. Nazarov, The magneto-geostrophic equations: a survey. Proceedings of the St. Petersburg Mathematical Society, Volume XV: Advances in Mathematical Analysis of Partial Differential Equations. American Mathematical Society, Providence, USA (2014). · Zbl 1307.76027
[56] A. Friedman, Free boundary problems arising in tumor models. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 9 (2004). · Zbl 1162.35460
[57] F. Gancedo, Existence for the α-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217 (2008) 2569-2598. · Zbl 1148.35099 · doi:10.1016/j.aim.2007.10.010
[58] F. Gancedo and R.M. Strain, Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem. Proc. Natl. Acad. Sci. 111 (2014) 635-639. · Zbl 1355.76065 · doi:10.1073/pnas.1320554111
[59] F. Gancedo, E. Garcia-Juarez, N. Patel and R.M. Strain, On the muskat problem with viscosity jump: Global in time results. Adv. Math. 345 (2019) 552-597. · Zbl 1410.35117 · doi:10.1016/j.aim.2019.01.017
[60] J. Gómez-Serrano and R. Granero-Belinchón, On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof. Nonlinearity 27 (2014) 1471-1498. · Zbl 1298.76178
[61] R. Granero-Belinchón. Global existence for the confined Muskat problem. SIAM J. Math. Anal. 46 (2014) 1651-1680. · Zbl 1298.35143 · doi:10.1137/130912529
[62] R. Granero-Belinchón and S. Shkoller, Well-posedness and decay to equilibrium for the muskat problem with discontinuouspermeability (2016). Trans. Amer. Math. Soc. 372 (2019) 2255-2286. · Zbl 1420.35475 · doi:10.1090/tran/7335
[63] R. Granero-Belinchón and S. Scrobogna, Asymptotic models for free boundary flow in porous media, Phys. D: Nonlinear Phenom. 392 (2019) 1-16. · Zbl 1451.76120 · doi:10.1016/j.physd.2019.02.013
[64] R. Granero-Belinchón, The inhomogeneous Muskat problem. Ph.D thesis, University of Cantabria, Spain (2013). · Zbl 1298.35143
[65] S.M. Hassanizadeh and W.G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13 (1990) 169-186.
[66] H.S. Hele-Shaw, The flow of water. Nature 58 (1898) 34-36.
[67] H.S. Hele-Shaw, On the motion of a viscous fluid between two parallel plates. Trans. Roy. Inst. Nav. Archit. 40 (1898) 218. · JFM 29.0645.03
[68] U. Hornung, Vol. 6 of Homogenization and Porous Media. Springer Verlag, New York (1997). · Zbl 0872.35002 · doi:10.1007/978-1-4612-1920-0
[69] A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167 (2007) 445-453. · Zbl 1121.35115
[70] O. Lazar, Global existence for the critical dissipative surface quasi-geostrophic equation. Commun. Math. Phys. 322 (2013) 73-93. · Zbl 1272.35069 · doi:10.1007/s00220-013-1693-2
[71] P.G. Lemarié-Rieusset, The Navier-Stokes problem in the 21st century. Chapman and Hall/, Boca Raton (2016). · Zbl 1342.76029 · doi:10.1201/b19556
[72] A.J. Majda and E.G. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow. Phys. D: Nonlin. Phenom. 98 (1996) 515-522. · Zbl 0899.76105 · doi:10.1016/0167-2789(96)00114-5
[73] A.J. Majda and A.L. Bertozzi, Vorticity and incompressible flow. In Vol. 27. Cambridge University Press, Cambridge (2002). · Zbl 0983.76001
[74] B.-V. Matioc, The muskat problem in 2d: equivalence of formulations, well-posedness, and regularity results. Anal. PDE 12 (2018) 281-332. · Zbl 1402.35319 · doi:10.2140/apde.2019.12.281
[75] B.-V. Matioc, Viscous displacement in porous media: the Muskat problem in 2D. Trans. Am. Math. Soc. 370 (2018) 7511-7556. · Zbl 1403.35333
[76] B.-V. Matioc, Well-posedness and stability results for some periodic Muskat problems. Preprint arXiv:1804.10403 (2018).
[77] A.-V. Matioc and B.-V. Matioc, Well-posedness and stability results for a quasilinear periodic muskat problem. J. Differ. Equ. 266 (2019) 5500-5531. · Zbl 1417.35135
[78] H.K. Moffatt and D.E. Loper, The magnetostrophic rise of a buoyant parcel in the earth’s core. Geophys. J. Int. 117 (1994) 394-402.
[79] M. Muskat, Two fluid systems in porous media. the encroachment of water into an oil sand. Physics 5 (1934) 250-264. · JFM 60.1388.01
[80] M. Muskat, The flow of fluids through porous media. J. Appl. Phys. 8 (1937) 274-282. · JFM 63.1368.03
[81] M. Muskat, The flow of homogeneous fluids through porous media. Soil Sci. 46 (1938) 169.
[82] D.A. Nield and A. Bejan, Convection in Porous Media. Springer Verlag, New York (2006). · Zbl 1256.76004
[83] F. Otto, Evolution of microstructure in unstable porous media flow: a relaxational approach. Commun. Pure Appl. Math. 52 (1999) 873-915. · Zbl 0929.76136
[84] F. Otto, Evolution of microstructure: an example, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin (2001) 501-522. · Zbl 1136.76349 · doi:10.1007/978-3-642-56589-2_22
[85] N. Patel and R.M. Strain, Large time decay estimates for the Muskat equation. Commun. Part. Differ. Equ. 42 (2017) 977-999. · Zbl 1378.35245 · doi:10.1080/03605302.2017.1321661
[86] T. Pernas-Castaño, Local-existence for the inhomogeneous Muskat problem. Nonlinearity 30 (2017) 2063. · Zbl 1365.76310
[87] J. Pruessand G. Simonett, On the Muskat flow. Evol. Equ. Control Theory 5 (2016) 631-645. · Zbl 1351.35271 · doi:10.3934/eect.2016022
[88] L. Rayleigh, On the instability of jets. Proc. London Math. Soc. s1-10 (1878) 4-13. · JFM 11.0685.01 · doi:10.1112/plms/s1-10.1.4
[89] J. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation. Comm. Pure Appl. Math. 58 (2005) 821-866. · Zbl 1073.35006 · doi:10.1002/cpa.20059
[90] T. Runst and W. Sickel, Vol. 3 of Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter, Germany (1996). · Zbl 0873.35001 · doi:10.1515/9783110812411
[91] P.G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. Roy. Soc. London Ser. A 245 (1958) 312-329. · Zbl 0086.41603 · doi:10.1098/rspa.1958.0085
[92] M. Siegel, R.E. Caflisch and S. Howison, Global existence, singular solutions, and ill-posedness for the Muskat problem. Commun. Pure Appl. Math. 57 (2004) 1374-1411. · Zbl 1062.35089
[93] L. Székelyhidi Jr. Relaxation of the incompressible porous media equation. Ann. Sci. Éc. Norm. Supér. 45 (2012) 491-509. · Zbl 1256.35073 · doi:10.24033/asens.2171
[94] L. Tartar, Incompressible fluid flow in a porous medium-convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia. Springer-Verlag Berlin (1980).
[95] A.R. Thornton, A.J. van der Horn, E. Gagarina, W. Zweers, D. van der Meer and O. Bokhove, Hele-shaw beach creation by breaking waves: a mathematics-inspired experiment. Environ. Fluid Mech. 14 (2014) 1123-1145. · doi:10.1007/s10652-014-9350-7
[96] S. Tofts, On the existence of solutions to the Muskat problem with surface tension. J. Math. Fluid Mech. 19 (2017) 581-611. · Zbl 1386.35358 · doi:10.1007/s00021-016-0297-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.