×

A center manifold analysis for the Mullins-Sekerka model. (English) Zbl 0896.35142

The authors consider the Mullins-Sekerka model which is a volume preserving and area shrinking generalization of the mean curvature flow. Using center manifold theory they prove a higher-dimensional analogue of a result of X. Chen [Arch. Ration. Mech. Anal. 123, 117-151 (1993; Zbl 0780.35117)] for two dimensions. They show that if the initial hypersurface \(\Gamma_0\) is close to a sphere, then \(\Gamma_t\) exists for all \(t>0\) and converges exponentially fast to a sphere.

MSC:

35R35 Free boundary problems for PDEs
35K55 Nonlinear parabolic equations
34C30 Manifolds of solutions of ODE (MSC2000)

Citations:

Zbl 0780.35117
Full Text: DOI

References:

[1] Alikakos, N.; Fusco, G., The spectrum of the Cahn-Hilliard operator for generic interface in higher space dimensions, Indiana Univ. Math. J., 42, 637-674 (1993) · Zbl 0798.35123
[2] Alikakos, N.; Bates, P. W.; Chen, X., Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rational Mech. Anal., 128, 164-205 (1994) · Zbl 0828.35105
[3] Alikakos, N.; Fusco, G.; Stefanopoulos, V., Critical spectrum and stability for a class of reaction-diffusion equations, J. Differential Equations, 126, 106-167 (1996) · Zbl 0879.35074
[4] N. Alikakos, G. Fusco, G. Simonett, The two phase Hele-Shaw problem for many almost spherical particles in a bounded domain; N. Alikakos, G. Fusco, G. Simonett, The two phase Hele-Shaw problem for many almost spherical particles in a bounded domain
[5] Amann, H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis (1993), Teubner: Teubner Stuttgart/Leipzig, p. 9-126 · Zbl 0810.35037
[6] Amann, H., Linear and Quasilinear Parabolic Problems (1995), Birkhäuser: Birkhäuser Basel · Zbl 0819.35001
[7] Angenent, S. B., Nonlinear analytic semiflows, Proc. Roy. Soc. Edinburgh A, 115, 91-107 (1990) · Zbl 0723.34047
[8] Bates, P. W.; Chen, X.; Deng, X., A numerical scheme for the two phase Mullins-Sekerka problem, Electron. J. Differential Equations, 11, 1-28 (1995) · Zbl 0823.65138
[9] Chen, X., The Hele-Shaw problem and area-preserving curve shortening motion, Arch. Rational Mech. Anal., 123, 117-151 (1993) · Zbl 0780.35117
[10] Chen, X.; Hong, J.; Yi, F., Existence, uniqueness, and regularity of classical solutions of the Mullins-Sekerka problem, Comm. Partial Differential Equations, 21, 1705-1727 (1996) · Zbl 0884.35177
[11] Constantin, P.; Pugh, M., Global solutions for small data to the Hele-Shaw problem, Nonlinearity, 6, 393-415 (1993) · Zbl 0808.35104
[12] Crank, J., Free and Moving Boundary Problems (1984), Clarendon: Clarendon Oxford · Zbl 0547.35001
[13] Da Prato, G.; Grisvard, P., Equations d’évolution abstraites nonlinéaires de type parabolique, Ann. Mat. Pura Appl. (4), 120, 329, .396 (1979) · Zbl 0471.35036
[14] Da Prato, G.; Lunardi, A., Stability, instability and center manifold theorem for fully nonlinear autonomous parabolic equations in Banach space, Arch. Rational Mech. Anal., 101, 115-144 (1988) · Zbl 0661.35044
[15] Duchon, J.; Robert, R., Evolution d’une interface par capillarité et diffusion de volume I. Existence locale en temps, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1, 361-378 (1984) · Zbl 0572.35051
[16] Escher, J., The Dirichlet-Neumann operator on continuous functions, Ann. Scuola Norm. Sup. Pisa (4), 21, 235-266 (1994) · Zbl 0810.35017
[17] Escher, J.; Simonett, G., Analyticity of the interface in a free boundary problem, Math. Ann., 305, 439-459 (1996) · Zbl 0857.76086
[18] Escher, J.; Simonett, G., Classical solutions of multi-dimensional Hele-Shaw models, SIAM J. Math. Anal., 28, 1028-1047 (1997) · Zbl 0888.35142
[19] Escher, J.; Simonett, G., On Hele-Shaw models with surface tension, Math. Res. Lett., 3, 467-474 (1996) · Zbl 0860.35149
[20] Escher, J.; Simonett, G., Classical solutions for Hele-Shaw models with surface tension, Adv. Differential Equations, 2, 619-642 (1997) · Zbl 1023.35527
[21] Gage, M.; Hamilton, R., The shrinking of convex curves by the heat equation, J. Differential Geom., 23, 69-96 (1986) · Zbl 0621.53001
[22] Gurtin, M. E., Thermomechanics of Evolving Phase Boundaries in the Plane (1993), Clarendon: Clarendon Oxford · Zbl 0787.73004
[23] Hanzawa, E. I., Classical solutions of the Stefan problem, Tôhoku Math. J., 33, 297-335 (1981) · Zbl 0571.35109
[24] Harrell, E. M., On the second eigenvalue of the Laplace operator penalized by curvature, Differential Geom. Appl., 6, 397-400 (1996) · Zbl 0880.58029
[25] Huisken, G., Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20, 237-266 (1984) · Zbl 0556.53001
[26] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems (1995), Birkhäuser: Birkhäuser Basel · Zbl 0816.35001
[27] Mayer, U. F., One-sided Mullins-Sekerka flow does not preserve convexity, Electron. J. Differential Equations, 08, 1-7 (1993) · Zbl 0811.35170
[28] U. F. Mayer, Two-sided Mullins-Sekerka flow does not preserve convexity; U. F. Mayer, Two-sided Mullins-Sekerka flow does not preserve convexity · Zbl 0913.35158
[29] Mullins, W. W.; Sekerka, R. F., Morphological stability of a particle growing by diffusion or heat flow, J. Appl. Math., 34, 323-329 (1963)
[30] Papanicolaou, V. G., The second periodic eigenvalue and the Alikakos-Fusco conjecture, J. Differential Equations, 130, 321-332 (1996) · Zbl 0861.34051
[31] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0516.47023
[32] Pego, R. L., Front migration in the nonlinear Cahn-Hilliard equation, Proc. Roy. Soc. London Ser. A, 422, 261-278 (1989) · Zbl 0701.35159
[33] Simonett, G., Invariant manifolds and bifurcation for quasilinear reaction-diffusion systems, Nonlinear Anal., 23, 515-544 (1994) · Zbl 0818.35039
[34] Simonett, G., Center manifolds for quasilinear reaction-diffusion systems, Differential Integral Equations, 8, 753-796 (1995) · Zbl 0815.35054
[35] Triebel, H., Höhere Analysis (1980), Verlag Harri Deutsch: Verlag Harri Deutsch Frankfurt · Zbl 0455.47035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.