×

A maximum principle for the Muskat problem for fluids with different densities. (English) Zbl 1173.35637

Summary: We study the fluid interface problem given by two incompressible fluids with different densities evolving by Darcy’s law. This scenario is known as the Muskat problem for fluids with the same viscosities, being in two dimensions mathematically analogous to the two-phase Hele-Shaw cell. We prove in the stable case (the denser fluid is below) a maximum principle for the \(L ^{\infty }\) norm of the free boundary.

MSC:

35Q35 PDEs in connection with fluid mechanics
76D27 Other free boundary flows; Hele-Shaw flows
35B50 Maximum principles in context of PDEs

References:

[1] Ambrose D.: Well-posedness of two-phase Hele-Shaw flow without surface tension. Euro. J. Appl. Math. 15, 597–607 (2004) · Zbl 1076.76027 · doi:10.1017/S0956792504005662
[2] Bear J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972) · Zbl 1191.76001
[3] Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181(2), 229–243 (1998) · Zbl 0923.76025 · doi:10.1007/BF02392586
[4] Constantin P., Pugh M.: Global solutions for small data to the Hele-Shaw problem. Nonlinearity 6, 393–415 (1993) · Zbl 0808.35104 · doi:10.1088/0951-7715/6/3/004
[5] Córdoba A., Córdoba D.: A maximum principle applied to Quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004) · Zbl 1309.76026
[6] Córdoba D., Fontelos M.A., Mancho A.M., Rodrigo J.L.: Evidence of singularities for a family of contour dynamics equations. Proc. Natl. Acad. Sci. USA 102, 5949–5952 (2005) · Zbl 1135.76315 · doi:10.1073/pnas.0501977102
[7] Córdoba D., Gancedo F.: Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Commun. Math. Phys. 273(2), 445–471 (2007) · Zbl 1120.76064 · doi:10.1007/s00220-007-0246-y
[8] Dombre T., Pumir A., Siggia E.: On the interface dynamics for convection in porous media. Physica D 57, 311–329 (1992) · Zbl 0760.35037 · doi:10.1016/0167-2789(92)90005-8
[9] Escher J., Simonett G.: Classical solutions for Hele- Shaw models with surface tension. Adv. Differ. Eqs. 2, 619–642 (1997) · Zbl 1023.35527
[10] Gancedo F.: Existence for the {\(\alpha\)}-patch model and the QG sharp front in Sobolev spaces. Adv. Math. 217/6, 2569–2598 (2008) · Zbl 1148.35099 · doi:10.1016/j.aim.2007.10.010
[11] Hele-Shaw, H.S.: The flow of water. Nature 58 (1489), 34-36 (1898); Ibid. 58 (1509), 520 (1898)
[12] Hou T.Y., Lowengrub J.S., Shelley M.J.: Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114, 312–338 (1994) · Zbl 0810.76095 · doi:10.1006/jcph.1994.1170
[13] Muskat M.: The flow of homogeneous fluids through porous media. McGraw-Hill, New York (1937) · JFM 63.1368.03
[14] Saffman P.G., Taylor G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. London, Ser. A 245, 312–329 (1958) · Zbl 0086.41603 · doi:10.1098/rspa.1958.0085
[15] Siegel M., Caflisch R., Howison S.: Global existence, singular solutions, and Ill-Posedness for the Muskat problem. Comm. Pure and Appl. Math. 57, 1374–1411 (2004) · Zbl 1062.35089 · doi:10.1002/cpa.20040
[16] Stein E.: Harmonic Analysis. Princeton University Press, Princeton, NJ (1993) · Zbl 0821.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.