×

Breakdown of smoothness for the Muskat problem. (English) Zbl 1293.35234

The authors study the Muskat equation, which desribes the evolution of the interface separating two incompressible fluids in a porous medium. They show the existence of a solution, defined for \(t \in [t_0, t_2]\), with the following properties:
“A. At time \(t_0\), the interface is a graph of a function. B. At some time \(t_1 \in (t_0, t_2)\), the interface is no longer a graph. C. For each time \(t \in [t_0, t_2)\), the interface is real analytic. D. At time \(t_2\), the interface is \(C^3\) smooth but not \(C^4\) smooth.” (From the introduction)
In order to prove the main result, the authors construct Muskat solutions analytic on a specially chosen domain \(\Omega(t) = \{|\operatorname{Im} x| < h(\operatorname{Re} x, t) \}\). A small perturbation of the real-analytic “turnover” solution, constructed in [A. Castro et al., Ann. Math. (2) 175, No. 2, 909–948 (2012; Zbl 1267.76033)], is taken as the initial datum.

MSC:

35Q35 PDEs in connection with fluid mechanics
76S05 Flows in porous media; filtration; seepage
76D27 Other free boundary flows; Hele-Shaw flows
35A20 Analyticity in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

Citations:

Zbl 1267.76033

References:

[1] Castro A., Córdoba D., Fefferman C., Gancedo F., López-Fernández María: Turnning waves and breakdown for incompressible flows. Proc. Natl. Acad. Sci. 108(12), 4754-4759 (2011) · Zbl 1256.76019 · doi:10.1073/pnas.1101518108
[2] Castro A., Córdoba D., Fefferman C., Gancedo F., Lopez-Fernandez M.: Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. 175(2), 909-948 (2012) · Zbl 1267.76033 · doi:10.4007/annals.2012.175.2.9
[3] Constantin P., Córdoba D., Gancedo F., Strain R.M.: On the global existence for the Muskat problem. J. Eur. Math. Soc. 15, 201-227 (2013) · Zbl 1258.35002 · doi:10.4171/JEMS/360
[4] Constantin P., Pugh M.: Global solutions for small data to the Hele-Shaw problem. Nonlinearity 6, 393-415 (1993) · Zbl 0808.35104 · doi:10.1088/0951-7715/6/3/004
[5] Córdoba A., Córdoba D.: A pointwise estimate for fractionary derivatives with applications to partial differential equations. Proc. Natl. Acad. Sci. USA 100(26), 15316-15317 (2003) · Zbl 1111.26010 · doi:10.1073/pnas.2036515100
[6] Córdoba D., Faraco D., Gancedo F.: Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Rat. Mech. Anal. 200, 725-746 (2011) · Zbl 1241.35156 · doi:10.1007/s00205-010-0365-z
[7] Córdoba D., Gancedo F.: Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Commun. Math. Phys. 2732, 445-471 (2007) · Zbl 1120.76064 · doi:10.1007/s00220-007-0246-y
[8] Escher J., Matioc B.-V.: On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results. Z. Anal. Awend. 30, 193-218 (2011) · Zbl 1223.35199 · doi:10.4171/ZAA/1431
[9] Shaw Hele: On the motion of a viscous fluid between two parallel plates. Trans. R. Inst. Nav. Archit. Lond. 40, 21 (1898) · JFM 29.0645.03
[10] Muskat M.: Two fluid systems in porous media. The encroachment of water into an oil sand. Physics 5, 250-264 (1934) · JFM 60.1388.01
[11] Nirenberg L.: An abstract form of the nonlinear Cauchy-Kowalewski theorem. J. Diff. Geom. 6, 561-576 (1972) · Zbl 0257.35001
[12] Nishida T.: A note on a theorem of Nirenberg. J. Diff. Geom. 12, 629-633 (1977) · Zbl 0368.35007
[13] Otto F.: Evolution of microstructure in unstable porous media flow: a relaxational approach. Comm. Pure Appl. Math. 52(7), 873-915 (1999) · Zbl 0929.76136 · doi:10.1002/(SICI)1097-0312(199907)52:7<873::AID-CPA5>3.0.CO;2-T
[14] Otto, F.: Evolution of microstructure: an example. In: Ergodic theory, analysis and efficient simulation of dynamical systems, pp. 501-522. Springer, Berlin (2001) · Zbl 1136.76349
[15] Saffman P.G., Saffman P.G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond Ser. A 245, 312-329 (1958) · Zbl 0086.41603 · doi:10.1098/rspa.1958.0085
[16] Shvydkoy R.: Convex integration for a class of active scalar equations. J. Am. Math. Soc. 24, 1159-1174 (2011) · Zbl 1231.35177 · doi:10.1090/S0894-0347-2011-00705-4
[17] Siegel M., Caflisch R., Howison S.: Global existence, singular solutions, and ill-posedness for the Muskat Problem. Commun. Pure Appl. Math. 57, 1374-1411 (2004) · Zbl 1062.35089 · doi:10.1002/cpa.20040
[18] Stein, E.M.: Harmonic Analysis. Princeton University Press, Princeton (1993) · Zbl 1267.76033
[19] Szekelyhidi L. Jr.: Relaxation of the incompressible porous media equation. Annales scientifiques l’ENS 45(3), 491-509 (2012) · Zbl 1256.35073
[20] Yi F.: Global classical solution of Muskat free boundary problem, . J. Math. Anal. Appl. 288, 442-461 (2003) · Zbl 1038.35083 · doi:10.1016/j.jmaa.2003.09.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.