×

Revisiting Coleman-de Luccia transitions in the AdS regime using holography. (English) Zbl 1472.83076

Summary: Coleman-de Luccia processes [S. R. Coleman and F. De Luccia, “Gravitational effects on and of vacuum decay”, Phys. Rev. D, 21, No. 12, 3305–3315 (1980; doi:10.1103/PhysRevD.21.3305)] for AdS to AdS decays in Einstein-scalar theories are studied. Such tunnelling processes are interpreted as vev-driven holographic RG flows of a quantum field theory on de Sitter space-time. These flows do not exist for generic scalar potentials, which is the holographic formulation of the fact that gravity can act to stabilise false AdS vacua. The existence of Coleman-de Luccia tunnelling solutions in a potential with a false AdS vacuum is found to be tied to the existence of exotic RG flows in the same potential. Such flows are solutions where the flow skips possible fixed points or reverses direction in the coupling. This connection is employed to construct explicit potentials that admit Coleman-de Luccia instantons in AdS and to study the associated tunnelling solutions. Thin-walled instantons are observed to correspond to dual field theories with a parametrically large value of the dimension \(\Delta\) for the operator dual to the scalar field, casting doubt on the attainability of this regime in holography. From the boundary perspective, maximally symmetric instantons describe the probability of symmetry breaking of the dual QFT in de Sitter. It is argued that, even when such instantons exist, they do not imply an instability of the same theory on flat space or on \(R \times S^3\).

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83E05 Geometrodynamics and the holographic principle
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T17 Renormalization group methods applied to problems in quantum field theory

References:

[1] S. R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D15 (1977) 2929 [Erratum ibid.16 (1977) 1248] [INSPIRE].
[2] Coleman, SR; De Luccia, F., Gravitational Effects on and of Vacuum Decay, Phys. Rev. D, 21, 3305 (1980) · doi:10.1103/PhysRevD.21.3305
[3] Hertog, T.; Horowitz, GT, Towards a big crunch dual, JHEP, 07, 073 (2004) · doi:10.1088/1126-6708/2004/07/073
[4] Hertog, T.; Horowitz, GT, Holographic description of AdS cosmologies, JHEP, 04, 005 (2005) · doi:10.1088/1126-6708/2005/04/005
[5] Barbón, JLF; Rabinovici, E., AdS Crunches, CFT Falls And Cosmological Complementarity, JHEP, 04, 044 (2011) · Zbl 1250.83062 · doi:10.1007/JHEP04(2011)044
[6] Marolf, D.; Rangamani, M.; Van Raamsdonk, M., Holographic models of de Sitter QFTs, Class. Quant. Grav., 28, 105015 (2011) · Zbl 1217.83032 · doi:10.1088/0264-9381/28/10/105015
[7] T. Banks, Heretics of the false vacuum: Gravitational effects on and of vacuum decay. 2, hep-th/0211160 [INSPIRE].
[8] T. Banks, The Top 10^500Reasons Not to Believe in the Landscape, arXiv:1208.5715 [INSPIRE].
[9] J. Maldacena, Vacuum decay into Anti de Sitter space, arXiv:1012.0274 [INSPIRE].
[10] Horowitz, GT; Orgera, J.; Polchinski, J., Nonperturbative Instability of AdS_5× S^5/ℤ_k, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.024004
[11] Barbón, JLF; Rabinovici, E., Holography of AdS vacuum bubbles, JHEP, 04, 123 (2010) · Zbl 1272.81137 · doi:10.1007/JHEP04(2010)123
[12] Nitti, F.; Silva Pimenta, L.; Steer, DA, On multi-field flows in gravity and holography, JHEP, 07, 022 (2018) · Zbl 1395.83013 · doi:10.1007/JHEP07(2018)022
[13] Ghosh, JK; Kiritsis, E.; Nitti, F.; Witkowski, LT, Holographic RG flows on curved manifolds and quantum phase transitions, JHEP, 05, 034 (2018) · Zbl 1391.83047 · doi:10.1007/JHEP05(2018)034
[14] Hertog, T.; Horowitz, GT; Maeda, K., Negative energy in string theory and cosmic censorship violation, Phys. Rev. D, 69, 105001 (2004) · Zbl 1405.83064 · doi:10.1103/PhysRevD.69.105001
[15] D. Harlow, Metastability in Anti de Sitter Space, arXiv:1003.5909 [INSPIRE].
[16] Kiritsis, E.; Nitti, F.; Silva Pimenta, L., Exotic RG Flows from Holography, Fortsch. Phys., 65, 1600120 (2017) · Zbl 1371.83171 · doi:10.1002/prop.201600120
[17] Gürsoy, U.; Kiritsis, E.; Nitti, F.; Silva Pimenta, L., Exotic holographic RG flows at finite temperature, JHEP, 10, 173 (2018) · Zbl 1402.81197 · doi:10.1007/JHEP10(2018)173
[18] Bea, Y.; Mateos, D., Heating up Exotic RG Flows with Holography, JHEP, 08, 034 (2018) · Zbl 1396.81161 · doi:10.1007/JHEP08(2018)034
[19] Banerjee, S.; Danielsson, U.; Dibitetto, G.; Giri, S.; Schillo, M., Emergent de Sitter Cosmology from Decaying Anti-de Sitter Space, Phys. Rev. Lett., 121, 261301 (2018) · doi:10.1103/PhysRevLett.121.261301
[20] Charmousis, C.; Gregory, R.; Padilla, A., Stealth Acceleration and Modified Gravity, JCAP, 10, 006 (2007) · doi:10.1088/1475-7516/2007/10/006
[21] Banerjee, S.; Danielsson, U.; Dibitetto, G.; Giri, S.; Schillo, M., de Sitter Cosmology on an expanding bubble, JHEP, 10, 164 (2019) · doi:10.1007/JHEP10(2019)164
[22] Dymarsky, A.; Kos, F.; Kravchuk, P.; Poland, D.; Simmons-Duffin, D., The 3d Stress-Tensor Bootstrap, JHEP, 02, 164 (2018) · Zbl 1387.81313 · doi:10.1007/JHEP02(2018)164
[23] Abbott, LF; Coleman, SR, The Collapse of an Anti-de Sitter Bubble, Nucl. Phys. B, 259, 170 (1985) · doi:10.1016/0550-3213(85)90305-0
[24] P. Tod, Some geometry of de Sitter space, arXiv:1505.06123 [INSPIRE].
[25] Hartle, JB; Hawking, SW, Wave Function of the Universe, Phys. Rev. D, 28, 2960 (1983) · Zbl 1370.83118 · doi:10.1103/PhysRevD.28.2960
[26] Hawking, SW; Hertog, T.; Reall, HS, Trace anomaly driven inflation, Phys. Rev. D, 63 (2001) · doi:10.1103/PhysRevD.63.083504
[27] Maldacena, JM, Eternal black holes in anti-de Sitter, JHEP, 04, 021 (2003) · doi:10.1088/1126-6708/2003/04/021
[28] Gao, P.; Jafferis, DL; Wall, AC, Traversable Wormholes via a Double Trace Deformation, JHEP, 12, 151 (2017) · Zbl 1383.83054 · doi:10.1007/JHEP12(2017)151
[29] Maldacena, J.; Stanford, D.; Yang, Z., Diving into traversable wormholes, Fortsch. Phys., 65, 1700034 (2017) · doi:10.1002/prop.201700034
[30] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
[31] Ghosh, JK; Kiritsis, E.; Nitti, F.; Witkowski, LT, Holographic RG flows on curved manifolds and the F -theorem, JHEP, 02, 055 (2019) · Zbl 1411.83030 · doi:10.1007/JHEP02(2019)055
[32] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[33] Aharony, O.; Gubser, SS; Maldacena, JM; Ooguri, H.; Oz, Y., Large N field theories, string theory and gravity, Phys. Rept., 323, 183 (2000) · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[34] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[35] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[36] Balasubramanian, V.; Kraus, P., Space-time and the holographic renormalization group, Phys. Rev. Lett., 83, 3605 (1999) · Zbl 0958.81046 · doi:10.1103/PhysRevLett.83.3605
[37] Freedman, DZ; Gubser, SS; Pilch, K.; Warner, NP, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys., 3, 363 (1999) · Zbl 0976.83067 · doi:10.4310/ATMP.1999.v3.n2.a7
[38] de Boer, J.; Verlinde, EP; Verlinde, HL, On the holographic renormalization group, JHEP, 08, 003 (2000) · Zbl 0989.81538 · doi:10.1088/1126-6708/2000/08/003
[39] Bianchi, M.; Freedman, DZ; Skenderis, K., How to go with an RG flow, JHEP, 08, 041 (2001) · doi:10.1088/1126-6708/2001/08/041
[40] Papadimitriou, I.; Skenderis, K., AdS/CFT correspondence and geometry, IRMA Lect. Math. Theor. Phys., 8, 73 (2005) · Zbl 1081.81085
[41] Ceresole, A.; Dall’Agata, G., Flow Equations for Non-BPS Extremal Black Holes, JHEP, 03, 110 (2007) · doi:10.1088/1126-6708/2007/03/110
[42] Klebanov, IR; Witten, E., AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B, 556, 89 (1999) · Zbl 0958.81134 · doi:10.1016/S0550-3213(99)00387-9
[43] Papadimitriou, I., Multi-Trace Deformations in AdS/CFT: Exploring the Vacuum Structure of the Deformed CFT, JHEP, 05, 075 (2007) · doi:10.1088/1126-6708/2007/05/075
[44] C. G. Callan Jr. and S. R. Coleman, The Fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D16 (1977) 1762 [INSPIRE].
[45] Dong, X.; Harlow, D., Analytic Coleman-De Luccia Geometries, JCAP, 11, 044 (2011) · doi:10.1088/1475-7516/2011/11/044
[46] A. Aguirre, T. Banks and M. Johnson, Regulating eternal inflation. II. The Great divide, JHEP08 (2006) 065 [hep-th/0603107] [INSPIRE].
[47] Espinosa, JR; Fortin, J-F; Trépanier, M., Consistency of Scalar Potentials from Quantum de Sitter Space, Phys. Rev. D, 93, 124067 (2016) · doi:10.1103/PhysRevD.93.124067
[48] Hoyos, C.; Kol, U.; Sonnenschein, J.; Yankielowicz, S., The a-theorem and conformal symmetry breaking in holographic RG flows, JHEP, 03, 063 (2013) · Zbl 1342.81343 · doi:10.1007/JHEP03(2013)063
[49] Hoyos, C.; Kol, U.; Sonnenschein, J.; Yankielowicz, S., The holographic dilaton, JHEP, 10, 181 (2013) · Zbl 1342.81343 · doi:10.1007/JHEP10(2013)181
[50] J. M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[51] Aharony, O.; Urbach, EY; Weiss, M., Generalized Hawking-Page transitions, JHEP, 08, 018 (2019) · Zbl 1421.81103 · doi:10.1007/JHEP08(2019)018
[52] Kiritsis, E.; Nitti, F.; Préau, E., Holographic QFTs on S^2× S^2, spontaneous symmetry breaking and Efimov saddle points, JHEP, 08, 138 (2020) · Zbl 1454.81196 · doi:10.1007/JHEP08(2020)138
[53] Ghosh, JK; Kiritsis, E.; Nitti, F.; Witkowski, LT, Back-reaction in massless de Sitter QFTs: holography, gravitational DBI action and f (R) gravity, JCAP, 07, 040 (2020) · Zbl 1492.83113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.